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Abstract

Kähler and in particular Calabi-Yau manifolds have received a great amount of attention for
their rich structure and applications in algebraic geometry and mathematical physics. This thesis
aims to give an introduction to these topics from the point of view of G-structures by considering
the interplay of the various layers of structure on these manifolds as well as their intrinsic torsion
and integrability. We also apply these results by giving an overview of the celebrated Calabi-Yau
Theorem, its implications and an outline of its proof.
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1 Introduction

The study of Kähler manifolds stands out due to the rich interplay of their various constituent
structures. Specifically, they consist of Riemannian, complex and symplectic structures on
their tensor algebra that are, in a certain sense, compatible with each other. Furthermore,
they are supplemented with integrability conditions that are strong enough for useful results
to hold while still leaving enough room for a diversity of solutions to exist. Among the central
topics of Kähler geometry are Hodge theory and implications for complex algebraic varieties.

The more restrictive Calabi-Yau manifolds, which we will define as compact Kähler mani-
folds that can be equipped with a compatible complex volume form, have garnered particular
interest: Supersymmetric string theory requires them in order to be compatible with observa-
tion and motivates various conjectures through physical principles, such as mirror symmetry.

The Calabi-Yau theorem roughly states that it is possible to adjust a Kähler structure on a
compact manifold in a unique way to realize any reasonable Ricci tensor. While it is not con-
structive and only states the unique existence of such an adaptation, it is highly useful both
in proving other theorems and by allowing one to find whole classes of examples of various
specific structures, such as Calabi-Yau manifolds.

In this thesis, we will be taking a structural approach to introduce these topics and try to
give an overview of how the various relevant components of Kähler manifolds relate to each
other. To this end, we will use the language of G-structures and explore in particular intrinsic
torsion and integrability. We will introduce each structure separately, roughly in the order of
increasing restrictivity, and state results in their natural context. A number of theorems and
tools that are central to the study of each structure but not of major importance to the topics
above will be mentioned in passing, at least.

The remainder of this thesis is divided into three chapters: We will begin by introducing
connections on fiber bundles as well as some foundational concepts and results. We then go
on to systematically present the various layers of structures that make up Kähler and Calabi-
Yau manifolds. Finally, we will focus on the Calabi-Yau theorem in particular to discuss its
implications, reformulate it as a differential equation and give a rough outline of its proof.

Conventions and Prerequisites

In the following, a manifold is assumed to be a second-countable Hausdorff space with a differ-
entiable structure, i.e. an equivalence class of atlases of charts to Rn with differentiable tran-
sition functions. It comes equipped with a tangent bundle TM giving rise to the (r, s)−tensor
bundles T r

sM =
⊗r

TM ⊗
⊗s

T ∗M and the k-form bundle ΛkM := ΛkT ∗M , whose smooth
sections are the differential forms in ΩkM = Γ∞(ΛkM). We use the Einstein convention, i.e.
repeated indices are implicitly summed over. The de Rham cohomology groups Hk

dR(M,K)
where K ∈ {R,C} arise from the cochain complex that has the exterior derivative as cobound-
ary map and yield Betti numbers bk(M) := dimK Hk

dR(M,K). We embed the exterior algebra
into the tensor algebra in such a way that

(α ∧ β)(X1, ..., Xk+l) =
1

k!l!

∑
σ∈Sk+l

sgnσ α
(
Xσ(1), ..., Xσ(k)

)
β
(
Xσ(k+1), ..., Xσ(k+l)

)
(1)

holds for α ∈ ΩkM,β ∈ ΩlM and tangent vectors Xj at the same point.
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We will assume the theory of differential manifolds, Lie groups, fiber bundles (in particular
principal and vector bundles) and de Rham cohomology. For the first real Chern class of a
complex manifold M , we will only need the basic result that it is represented by the form
c1 := −TrC(R)/2πi where R is the curvature of any connection on M . Furthermore, the next
chapter will summarize some aspects of the theory of connections on fiber bundles but only
prove selected results.

We will also refrain from reproducing some elaborate proofs in the main text, but always
give references to a full account. This mainly applies to the theorems of Moser, Darboux and
Newlander-Nirenberg as well as the Hodge decomposition, Kähler identities and the full details
of Yau’s proof of the Calabi conjecture.
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2 Connections on fiber bundles

This chapter is meant to concisely introduce connections on bundles and summarise the results
necessary for the remainder of this thesis. For this reason, many theorems will be stated
without proof here. More thorough expositions can for example be found in [1, 2, 3, 4, 5], on
which the following is partly based.

The first section starts by introducing the general notion of connections on fiber bundles
and discusses the special cases of principal, linear and manifold connections. The next section
defines curvature and torsion as central invariants associated with connections. Finally, we
discuss G-structures as a way to systematically define structures on manifolds as well as their
interaction with connections.

The glaring omission is the discussion of parallel sections and transport, which leads to
holonomy as another very important invariant.

2.1 Connections

2.1 Definition. Let π : E → M be a smooth fiber bundle. Vp := ker dπp defines a
distribution, the so-called vertical bundle.

A connection on E is characterized by a horizontal distribution H so that TE =
V ⊕ H. Equivalently, it can be described through a connection form ω : TE → V with
ω2 = ω and ω|V = IdV , which is just the associated projection map so that Hp = kerωp.

A connection evidently connects the fibers close to each other by giving a sense of direction
in which one can move in E purely horizontally without moving within the fiber. For fiber
bundles with more vertical structure, we find natural compatibility conditions for this inter-
pretation to make sense:

2.2 Def. & Prop. Let π : P → M be a principal G-bundle over a manifold M . A
connection on P is called a principal connection if H is right-invariant under the vertical
Lie structure, i.e.

Hp · g = Hp·g ∀p ∈ P, g ∈ G. (2)

We can canonically identify each Vp with g by mapping the left-invariant vector fields X ∈ g
to the fundamental vector field X∗ evaluated at p ∈ P :

(X∗)p :=
d

dt

∣∣∣∣
t=0

p · exp tX. (3)

This allows us to interpret the connection form ω as an element of Ω1(P, g) so that

ω(X∗) = X and R∗
gω = Adg−1 ω. (4)

2.3 Def. & Prop. Let π : E → M be a vector bundle over a manifold M with typical
fiber V . A connection on E is called a linear connection if it is right-invariant under the
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canonical action of the general linear group of the fiber:

Hp · g = Hp·g ∀p ∈ P, g ∈ GL(V ). (5)

Equivalently, a linear connection can be described through a covariant derivative, which
is a linear map ∇ : Γ(E) → Γ(T ∗M ⊗ E) so that the Leibniz rule

∇(fσ) = df ⊗ σ + f∇σ ∀f ∈ C∞(M), σ ∈ Γ(E) (6)

holds. This map describes the projection onto the vertical fiber that a section of E exhibits
when moving along a tangential vector on the base manifold. For such a X ∈ Γ(TM) and
σ ∈ Γ(E) we also write ∇Xσ := (∇σ)(X) ∈ Γ(E).

2.4 (Existence and multiplicity). Given any fiber, principal or vector bundle π : F → M we
can always define a compatible connection: Considering appropriate local trivializations over
an open cover, we can use a partition of unity to combine the flat connections associated with
each trivialization, i.e. sewing together the kernels of the local projections onto the model fiber
to form a horizontal distribution.

The difference of two connection forms ω1 and ω2 on E clearly is an idempotent form α
that vanishes on the vertical bundle. If ω1/2 are principal or linear connections, then α is
also invariant under the respective right-action. Indeed, the set of all possible compatible
connections on a manifold M is an affine space with the space of such α as linear part. For
principal connections, this can be identified with the space ΩAd,hor(F, g) of Ad-equivariant
horizontal forms with values in the Lie algebra.

For vector bundles that arise through a principal bundle and a vector space representation of
its Lie group, any principal connection induces a linear connection and the covariant derivative
can be reexpressed:

2.5 Def. & Prop. Let π : P → M be a principal G-bundle over a manifold M and
ρ : G → GL(V ) a representation of G on a vector space V . Any principal connection on
P reduces to a linear connection on the associated vector bundle E := P ×G,ρ V . There
is a canonical identification of the space Ωk

ρ,hor(P, V ) of V -valued horizontal ρ−equivariant
k-forms on P with Ωk(M,E). This allows us to interpret the covariant derivative as the
covariant differential

Dω : Ωk
ρ,hor(P, V ) → Ωk+1

ρ,hor(P, V )

α 7→ Dωα :=
(
(v0, ..., vk) 7→ dα(vh0 , ..., v

h
k )
)
,

where the superscript h refers to the projection of the tangent vector to the horizontal bundle.

In the case of the frame bundle, this correspondence is bijective so that we can define:

2.6 Definition. A connection on a manifold M is a linear connection on the tangent
bundle, or, equivalently, a principal connection on its frame bundle.

2.2 Curvature and Torsion

2.7 Def. & Prop. Let π : E → M be a vector bundle over M equipped with a linear con-
nection ∇. There then exists a unique R ∈ Ω2(M,EndE), called the Riemann curvature,
so that

R(X ∧ Y )σ = ∇X∇Y σ −∇Y ∇Xσ −∇[X,Y ]σ ∀X,Y ∈ Γ(TM), σ ∈ Γ(E). (7)
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The curvature satisfies the differential Bianchi identity

∇XR(Y, Z) +∇Y R(Z,X) +∇ZR(X,Y ) = 0. (8)

If E arises as an associated bundle from a representation ρ on a principal G-bundle
P with a principal connection ω, the Riemann curvature can be seen as arising from the
Curvature form Ω := Dωω ∈ Ω2(M,AdP ) ' Ω2

Ad,hor(P, g) via R = ρ∗Ω. The differential
Bianchi identity then asserts

DωΩ = 0. (9)

2.8 (Curvature as an obstruction to integrability). One can consider a connection on a fiber
bundle to be integrable if the connection form can locally be regarded as the differential of
the vertical projection map of a local trivialization. It turns out that non-vanishing curvature
is exactly the obstruction to this sense of integrability on principal and vector bundles: Ω = 0
and R = 0, respectively, are equivalent to the existence of such local trivializations as well as
the integrability of the horizontal distribution. In these cases we speak of a flat connection.

We will later have to consider line bundles in particular:

2.9 (Connections and curvature on line bundles). Multiplications with a scalar are the only
linear maps on a one-dimensional space. This means that a linear connection ∇ on a line
bundle can locally be expressed as a 1-form η with values in the respective field: Given a
local frame σ, which is just a non-vanishing local section in this case, we define for any tangent
vector X

η(X)σ := ∇Xσ. (10)

Any other section can be expressed relatively to σ with a function f as fσ. ∇fσ is then
already determined by the preceding equation. By writing out the definition one immediately
sees that the curvature tensor associated with ∇ is locally given by

R(X ∧ Y ) σ = dη(X,Y ) σ. (11)

It is straightforward to see that the curvature vanishes in a region if and only if a local
non-vanishing parallel section exists: By the last equation and the Poincaré Lemma, R = 0
implies η = dg for a local function g. We can then check that e−gσ is a local parallel section:

∇X(e−gσ) = X(e−g)σ + e−gη(X)σ = (−X(g) + dg(X)) e−gσ = 0. (12)

The other direction is trivial. This is of course just a concrete example of the general principle
mentioned in 2.8.

Given a connection on a manifold, the fact that the covariant derivative of a vector field
is another vector field allows us to define a reduced notion of curvature and another invariant
that relates to a stronger concept of integrability:

2.10 Def. & Prop. Let M be a manifold equipped with a connection. The Ricci tensor
Ric ∈ T 0

2M is then defined as the contraction

Ric(X,Y ) := Tr(Z 7→ R(Z,X)Y ). (13)

There also exists a unique T ∈ Ω2(M,TM), called the Torsion, so that

T (X ∧ Y ) = ∇XY −∇Y X − [X,Y ] ∀X,Y ∈ Γ(TM). (14)

Since TM is associated to the frame bundle FM over M , T can be regarded as an element
of Ω2

GL(Rn),hor(FM,Rn) and is then referred to as the Torsion form Θ.
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2.11 (Torsion as an obstruction to integrability). We call a connection on a manifold M
integrable, if one can find a chart around every point of M so that its coordinate frame is
horizontal. It turns out that this is equivalent to the vanishing of both curvature and torsion.
It also clearly implies the weaker notions of integrability of the principal connection on the
frame bundle and of the linear connection on the tangent bundle.

2.12 (Identities of torsion-free connections). Given a torsion-free connection on a manifold M ,
we can find the algebraic Bianchi identity

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0, (15)

which implies that the Ricci tensor is symmetric. Moreover, the Lie bracket can in this case
be expressed through the covariant derivative as [X,Y ] = ∇XY −∇Y X.

2.13 (Solder forms). Let π : E → M be an n-dimensional vector bundle and FE its frame
bundle, which is equipped with a principal connection ω. A solder form θ ∈ Ω(M,E) '
ΩGL(Rn),hor(FE,Rn) allows a more general definition of torsion as Θ = Dωθ. The algebraic
Bianchi identity then takes the form

DωΘ = Ω ∧ θ. (16)

The usual definitions are recovered when equipping the tangent bundle of a manifold with its
identity as the canonical solder form.

2.3 G-Structures

2.14 Definition. Let M be an n-manifold so that its frame bundle FM is a principal bundle
with fiber GL(n,R). For an embedded (regular) Lie subgroup G ↪→ GL(n,R) we define a G-
structure to be a principal G-bundle P over M with a G-equivariant fiber bundle inclusion
into FM .

Effectively, this just means that we smoothly choose preferred sets of bases in the tangent
spaces. As we will see in the next chapter, a large number of structures on manifolds can be
described as G-structures for a suitable G. We will in particular consider closed subgroups
of GL(n,R), which by Cartan’s closed-subgroup theorem automatically are embedded regular
Lie subgroups.

2.15. Let M be a manifold and G a closed subgroup of H := GL(dimM,R). We can then
define a bijective correspondence between sections of the fiber bundle

FM/G := FM ×H H/G (17)

and G-structures on M by mapping σ ∈ Γ(FM/G) to the subbundle π−1
FM/G(σ(M)) where

πFM/G : FM → FM/G is the projection. Clearly, such sections and therefore G-structures
do not necessarily need to exist globally.

For a given G-structure, there are natural compatibility conditions with connections and
charts, which in turn yield notions of integrability:

2.16 Definition. A connection on a manifold M is called compatible with a G-structure P
on M , if the principal connection on FM reduces1 to a principal connection in the subbundle
P . A coordinate chart on a manifold M is called compatible if the induced local frames
are also sections of P .

A G-structure on a manifold M is called (intrinsically) flat or torsion-free if there
exists a compatible connection with vanishing curvature or torsion tensor, respectively. It is
integrable if the manifold can be covered with compatible coordinate charts.
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For structures defined through an invariant tensor, these conditions take a particularly
simple form:

2.17 Proposition. Let K0 be a model tensor over Rn and G ⊆ GL(n,R) the group of linear
transformations that leave K0 invariant, i.e. its (closed!) stabilizer. We then find:

(a) A G-structure on an n-dimensional manifold M is equivalent to the choice of a tensor
K on M that is pointwise similar to K0. The bundle of such tensors is isomorphic
to FM/G from 2.15.

(b) A chart on M is compatible if and only if the coefficients of K relative to that chart
are given by K0.

(c) A connection on M is compatible with the G-structure precisely when ∇K = 0.

Proof.
(a): For a G-structure P we can choose a frame u ∈ Px for every x ∈ M , which maps the fiber
over x of any tensor bundle onto the respective set of tensors on Rn. We can then define a
tensor K by pulling back K0. This is independent of the choice of frame since any other frame
in P is related to u via a transformation in G, which leaves K0 invariant. Conversely, given a
tensor K that is pointwise similar to K0, the frames in which it takes the form of K0 assemble
into a principal G-bundle. By construction, this also gives a bundle isomorphism to FM/G.

(b) follows immediately since u ∈ P is equivalent to saying that K takes the form K0

relative to the frame u.
(c): Given a compatible connection, K can be seen to arise from an equivariant 0-form

over TP with values in the appropriate tensor bundle of Rn. ∇K = 0 then holds exactly when
the exterior derivative of this 0-form vanishes, i.e. when it is constant. But this is the case
per definition, since according to (a), K takes the form K0 relative to all frames in P . If,
conversely, the connection was not compatible we could find a horizontal tangent vector X in
the frame bundle that is not tangent to P , implying that ∇π∗XK 6= 0.

Note that (b) in particular implies that a G-structure is integrable if and only if it can be
covered with coordinate charts such that K has constant coefficients, since these charts are
compatible up to a linear transformation in GL(n,R)/G.

2.18 Def. & Prop. Let M be a manifold equipped with a G-structure P and let V := Rn.
We define the map

σ : g⊗ V ∗ → V ⊗ Λ2V ∗ (18)

as the inclusion g ⊆ V ⊗ V ∗ followed by antisymmetrization in the covariant indices. The
exact sequence2

0 → kerσ ι−→ g⊗ V ∗ σ−→ V ⊗ Λ2V ∗ pr−→ cokerσ → 0 (19)

then yields, via the natural representations of G on each of these spaces, vector bundles
associated with the G-structure:

0 → ker σ̃ ι−→ AdP ⊗ T ∗M
σ̃−→ TM ⊗ Λ2T ∗M

pr−→ coker σ̃ → 0. (20)

The difference between two covariant derivatives ∇ and ∇′ on TM that are compatible
with P yields a section of AdP ⊗ T ∗M . Eq. (14) then directly implies that the difference
between the associated torsions T and T ′ is given by σ(∇−∇′) ∈ Γ(TM ⊗ Λ2T ∗M).

1Note that this is equivalent to either the connection form taking values in g when restricted to TP or the
horizontal bundle being tangent to P . For the covariant derivative of any associated vector bundle, this means
∇X(gσ) = g∇Xσ ∀g ∈ G.
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We therefore define the intrinsic torsion T i(P ) = pr(T ) ∈ Γ(coker σ̃) of the G-structure
through the torsion tensor T of any compatible connection. By the above, this is indepen-
dent of the choice of compatible connection and vanishes everywhere exactly if a torsion-free
connection compatible with the G-structure exists. Moreover, the space of torsion-free con-
nections compatible with P is isomorphic to Γ(ker σ̃).

2.19 (Intrinsic torsion as an obstruction to integrability of a G-structure). An integrable G-
structure on a manifold M is always free of intrinsic torsion: Similarly to the argument in 2.4,
we can use compatible charts to locally define compatible connections. Evaluating their torsion
on the induced basis shows that it indeed vanishes. Since the torsion of the sewn connection
decomposes into those of the constituent local connections, it vanishes as well.

An integrable G-structure does not, however, need to be free of intrinsic curvature. An
approach similar to the above fails because the curvature tensor does not simply decompose
into the curvature tensors of the local connections as it is a second-order invariant.

We will see in the next chapter that, in many cases, a structure without intrinsic torsion
is already integrable. A simple example of this are distributions: They can be regarded as G-
structures where G is the subgroup of GL(n,R) that leaves the distribution invariant. The
Frobenius Theorem asserts that the vanishing of the Frobenius tensor, which can be identified
with the intrinsic torsion, implies integrability of the distribution.

2The kernel of σ is also called the first prolongation g(1) and the cokernel is denoted H0,1(g). This is part
of the Spencer cohomology that follows from the cochain complex Cp,q := Symp V ∗ ⊗ ΛqV ∗ together with a
boundary map that can be interpreted as the exterior derivative of polynomial forms. For more, see e.g. [6].
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3 Layers of structure on Kähler manifolds

The group U(n) can be regarded as a subgroup of a number of groups, each of it interesting
in its own right:

U(n) = O(2n) ∩ Sp(2n,R) ∩GL(n,C) (21)

This richness is paralleled in Kähler manifolds, which are just the manifolds equipped with a
torsion-free U(n)-structure. The purpose of this chapter is to peel off the different layers of
this structure to explore their interrelations and put it back together as a consistent whole.

We will begin with a quick discussion of orientations, volume forms, Riemannian metrics
and symplectic forms on manifolds from the perspective of structure group reductions. We
then introduce (almost) complex structures and explore the splitting of complexified tangent
and differential form bundles as well as their integrability. Hermitian and Kähler manifolds
then arise naturally as a combination of the above structures and we will particularly discuss
their Hodge theory. Finally, we introduce Calabi-Yau manifolds and give a brief overview of
analogous constructions based on the quaternionic general linear group.

3.1 Orientedmanifolds asGL+(n,R)-structures

3.1 Definition. An Orientation on an n-manifold M is a GL+(n,R)-structure.

3.2 (Alternative description). This is equivalent to a smooth choice of vector space orientations
on each of the tangent spaces in TM , where the reduced frame bundle P contains exactly the
positively-oriented bases. These orientations are compatible, since by definition the transition
maps have a positive determinant.

3.3 (Existence and multiplicity). According to 2.15, an orientation is a section of M̃ :=
FM/GL+(n,R), which carries the fiber GL(n,R)/GL+(n,R) ∼= Z2. If M̃ is connected, then
it has to be a double cover of M without global sections so that no orientations exist. If it is
not connected, M̃ is a trivial bundle with exactly two possible global sections to choose from.

From the point of view of characteristic classes, a manifold is orientable if and only if its
first Stiefel-Whitney class is zero.

3.4 (Compatible charts and connections). Any connection on the manifold is compatible since
GL+(n,R), as a connected component of GL(n,R), carries the same Lie algebra and any
coordinate chart can be made compatible by reversing its orientation if necessary. In particular,
this implies that a GL+(n,R)-structure is automatically integrable and thereby also free of
intrinsic torsion.

3.2 Volume forms as SL(n,R)-structures

3.5 Definition. A volume form on an n-manifold M is a SL(n,R)-structure.

3.6 (Alternative description). As the name suggests, this definition is equivalent to the choice
of a non-vanishing global section µ of the canonical line bundle Ωn(M). This follows as
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discussed in 2.17 since SL(n,R) can be defined as the stabilizer of the standard volume form
on Rn.

3.7 (Existence and multiplicity). A volume form exists if and only if M is orientable: On
one hand, a volume form induces an orientation on M since SL(dimM,R) ⊆ GL+(dimM,R).
On the other hand, an orientation on M induces an orientation on the canonical line bundle,
which already implies its triviality since its fiber is R. Locally, we can of course always find a
volume form. Some global features on non-orientable manifolds can be salvaged by considering
densities instead.

For orientable M , the space of volume forms is an affine space with the space of everywhere
non-vanishing real functions over M as its linear part since any two volume forms µ, µ′ are
related by exactly one such f so that µ′ = fµ.

3.8 (Induced measure). Given a volume form µ on a manifold M , there exists exactly one
measure on the Borel sets that we denote volµ so that the volume of any open subset U is
given by

volµ(U) :=

∫
U

µ (22)

and functions f ∈ C∞(M) are integrated as∫
U

f dvolµ =

∫
U

f · µ (23)

The volumes of compact connected components of M are global invariants associated with
the volume form. These are indeed the only independent invariants due to the following
result:

3.9 Theorem (Moser [7]). Given two compact connected diffeomorphic manifolds M and N
that are equipped with volume forms µ and ν, there exists a diffeomorphism mapping M
to N and µ to ν if and only if

∫
M

µ =
∫
N
ν.

This also allows us to easily construct compatible charts so that any SL(dimM,R)-structure
is both integrable and free of intrinsic torsion.

3.3 Riemannianmanifolds asO(n)-structures

3.10 Definition. A Riemannian structure on an n-manifold M is an O(n)-structure.

3.11 (Alternative description as a metric tensor). Since the orthogonal group is just the
stabilizer of the standard scalar product on Rn, 2.17 and Sylvester’s law of inertia allow us to
identify a Riemannian structure with a symmetric and positive definite (0, 2)-tensor g, giving
an inner product on the tangent spaces.

The metric can also be seen as a linear map ϕg : TM → T ∗M, vp 7→ gp(vp, ·), which is an
isomorphism since g is non-degenerate. It is referred to as the musical isomorphism because
the shorthands v[ := ϕg(v) and α] := ϕ−1

g (α) raise and lower indices in local coordinates.
The metric induces an inner product ϕ−1 ∗

g g on the cotangent spaces, which we will also
denote g, and extends to the fibers of the tensor and form bundles as well. We will need the
latter in particular, which is determined by

g(α1 ∧ ... ∧ αk, β1 ∧ ... ∧ βk) = det(g(αi, βj)) (24)

for 1-forms αj and βj .
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3.12 (Existence). A Riemannian structure can be defined on any manifold M by pulling back
the standard metric along a locally finite set of charts and gluing them together with the
associated partition of unity.

3.13 (Compatible connections and intrinsic torsion). By 2.17, compatible connections are
those with ∇g = 0. Following [8], the first prolongation o(n)(1) = kerσ from 2.18 equals 0,
since for any α ∈ o(n)⊗ (Rn)∗ we find

g(α(x)y, z) = −g(y, α(x)z) = −g(y, α(z)x) = g(α(z)y, x)

= g(α(y)z, x) = −g(z, α(y)x) = −g(α(x)y, z) ∀x, y, z ∈ Rn,

where we have used skew-symmetry of α(X) and σ(α) = 0. On dimensional grounds, this
already implies that σ is an isomorphism and so there always exists exactly one torsion-free
compatible connection, the Levi-Civita connection ∇g. In particular, any O(n)-structure is
free of intrinsic torsion. A more direct characterization of the Levi-Civita connection is given
by

2 g(∇g
XY, Z) = X(g(Y, Z)) + Y (g(Z,X)) + Z(g(X,Y ))

+ g([X,Y ], Z) + g([Z,X], Y ) + g(X, [Z, Y ]),
(25)

which readily follows from ∇gg = 0 and T g = 0.

3.14 (Curvature of the Levi-Civita connection and Integrability). By ∇R = 0 we find the
additional symmetry relation

g(R(X,Y )U, V ) + g(R(X,Y )V,U) = 0 (26)

of the curvature tensor of the Levi-Civita connection, which in particular implies the symmetry
Ric(X,Y ) = Ric(Y,X) of the Ricci tensor. We can also define the scalar curvature Scal by
contracting the remaining indices of Ric using the metric.

Moreover, the Levi-Civita curvature is the only obstruction to integrability, i.e. the Rie-
mannian structure is integrable if and only if R = 0 everywhere (see e.g. 10.6.7 of [9]).

3.15 (Einstein manifolds). An Einstein manifold is a Riemannian manifold such that the
Ricci tensor is proportional to the metric:

Ric = λ g. (27)

This in particular implies Scal = λ dimM .

There is, of course, a large amount of results related to the induced metric space structure as
well as the exponential map and geodesics. This is outside of the scope of this short summary,
however.

Oriented Riemannian manifolds and Hodge Theory

3.16 (Oriented Riemannian manifolds). An oriented Riemannian structure on an n-
manifold M is an SO(n)-structure. As the simultaneous stabilizer of the standard metric
and volume form, it is given by a Riemannian structure together with a volume form that can
be written

µg =
√

det(g(∂xi, ∂xj)) dx
1 ∧ ... ∧ dxn (28)

in positively oriented local coordinates x1, ..., xn. Any Riemannian structure can locally be
oriented by considering a simply-connected neighbourhood.

An oriented Riemannian structure gives us additional useful tools:
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3.17 (Hodge star and L2-inner product). We can define the Hodge star operator as the
unique linear bundle map ∗ : ΛkM → Λn−kM that satisfies

α ∧ (∗β) = g(α, β)µg (29)

for two k-forms α and β, where the metric on the right is to be understood as in Eq. (24).
Existence and uniqueness of such a map can easily be seen by writing this out in a positively
oriented orthonormal basis. This also yields the following consequences of the definition:

∗ 1 = µg, ∗ ∗ α = (−1)k(n−k)α, and g(α, β) = g(∗α, ∗β), (30)

where α, β are elements of Ωk(M) again.
We can also define the L2-inner product on the space Ωk

c (M) of k-forms with compact
support:

< α, β >L2 :=

∫
M

g(α, β) dµg =

∫
M

α ∧ (∗β). (31)

3.18 (Codifferential and Laplacian). We define the codifferential d∗ : Ωk(M) → Ωk−1(M)
as

d∗ := (−1)kn+n+1 ∗ ◦ d ◦ ∗ (32)

for k > 0 and d∗f = 0 for functions f ∈ Ω0(M). Integration by parts using Stokes’ Theorem
shows that this is the formal adjoint to the exterior derivative with respect to the L2-inner
product, i.e. < α, dβ >L2= < d∗α, β >L2 . One easily sees (d∗)2 = 0 and we say α is coclosed
if d∗α = 0 and coexact if there exists a β such that α = d∗β.

The Hodge-Laplacian ∆d : Ωk(M) → Ωk(M) is defined as

∆d = dd∗ + d∗d = (d+ d∗)2. (33)

Hodge theory is essentially the study of this operator. A k-form α is called harmonic if
∆d α = 0. One can see by considering 0 =< α,∆dα >L2 that this is equivalent to being both
closed and coclosed. We write Hk

d(M) := ker(∆d : Ωk(M) → Ωk(M)) for the space of such
forms.

The following central result gives particular importance to harmonic forms:

3.19 Theorem (Hodge Decomposition Theorem). Let M be a compact and oriented Rie-
mannian manifold. The space of k-forms decomposes into

Ωk(M) = Hk
d ⊕ dΩk−1(M)⊕ d∗Ωk+1(M), (34)

and the three constituent spaces are orthogonal with respect to the L2-inner product.

The elaborate proof of the direct sum decomposition can be found e.g. as 6.8 of [10].
Orthogonality on the other hand is just an immediate consequence of the construction of d∗
as formal adjoint. Reaping the rewards of this Theorem, we find:

3.20 Corollary (Hodge’s Theorem). Let M be a compact and oriented Riemannian n-
manifold. Every element of the k-th de Rham cohomology group contains exactly one har-
monic k-form so that Hk

dR(M) is naturally isomorphic to Hk
d(M).

Proof. The statements follow if φ : α 7→ [α] is an isomorphism from Hk
d(M) to Hk

dR(M). It
is well-defined since we have already seen that harmonic forms are closed. φ is injective since
two harmonic forms in the same de Rham class have to differ by an element of dΩk−1(M)
that is also harmonic, so by the Hodge decomposition the difference can only be zero. Finally,
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φ is surjective: A closed form α representing a given de Rham class can be decomposed into
α = αH + dβ + d∗γ, where αH is harmonic. Since α is closed,

0 =< dα, γ >L2=< dd∗γ, γ >L2= ||d∗γ||L2 ⇒ d∗γ = 0 (35)

Then, φ(αH) = [αH ] = [αH + dβ] = [α].

3.21 Corollary (Poincaré duality). Let M be a compact and oriented Riemannian n-
manifold. The spaces Hk

d(M) and Hn−k
d (M) are naturally isomorphic and the Betti numbers

satisfy bk(M) = bn−k(M).

Proof. The isomorphism is simply given by the Hodge star, which we have already seen to be
bijective. It maps harmonic forms onto harmonic forms because it commutes with ∆d. The
previous corollary then immediately gives the relationship between Betti numbers.

3.4 Complexmanifolds asGL(n/2,C)-structures

3.22 Definition. An almost complex structure on a manifold M of even dimension n
is a GL(n/2,C)-structure.

3.23 (Alternative description). The complex linear group GL(n/2,C) ⊆ GL(n,R) can be
defined as the stabilizer of the endomorphism J0 over Rn that is represented by the block
matrix

J0 =

(
0 Idn/2

− Idn/2 0

)
, (36)

since J0 can be interpreted as multiplication with the imaginary unit in Cn/2. A section J of
the endomorphism bundle is pointwise similar to J0 if and only if

∀x ∈ M : J2
x = − IdTxM (37)

because any such real J has paired eigenvalues ±i in the complexified vector space that can
be rotated to individual

(
0 1
−1 0

)
Jordan-blocks.

By 2.17, an almost complex structure is therefore equivalent to the choice of such a J on
M . Note that it is not necessary to demand even dimensionality since this is already implied
by 0 < (det Jx)2 = (−1)n.

3.24 (Orientation and Existence). Since GL(n/2,C) ⊆ GL+(n,R), almost complex structures
carry a natural orientation. Even dimension and orientability are not sufficient for existence,
however, since there can be further topological obstructions. We will see in 3.57 that existence
of almost complex, almost symplectic and Hermitian structures are equivalent and discuss
these obstructions in more detail there.

Complex vector bundles on almost complex manifolds

There are various ways in which we can construct complex vector bundles from the real tangent
bundle TM :

3.25 Definition. Let M be an almost complex manifold. We define...

• the complexified tangent bundle TCM := TM ⊗ C,

• the complexified k-form bundle Λk
CM := ΛkM ⊗ C,

• the complexified tensor bundle T r
s CM := T r

sM ⊗ C, and
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• the holomorphic tangent bundle THM which is the complex vector bundle that
arises from equipping the real tangent bundle TM with the complex vector space
structure induced by J on every fiber.

While the first three bundles can be defined without reference to an almost complex struc-
ture, they are often of interest due to their interaction with it. Note that the artificial con-
struction of a complex structure on TCM doubles its real dimension so that

n = dimC TCM = dimR TM = 2 dimC THM. (38)

The almost complex structure induces a splitting of this larger bundle into two copies of the
holomorphic tangent bundle:

3.26 Def. & Prop (Splitting of TCM). Let M be an almost complex manifold. We define
two subbundles of TCM as eigenspaces of J by setting

T ′M := ker (J − i Id) and T ′′M := ker (J + i Id). (39)

It then follows that
TCM = T ′M ⊕ T ′′M, (40)

where X 7→ 1
2 (X − iJX) is a bijective C-linear bundle map and X 7→ 1

2 (X + iJX) is a
bijective C−skewlinear bundle map from THM to T ′M and T ′′M , respectively.

Proof. It is easily checked that the given bundle maps are well-defined, bijective and (skew-)
linear. ker(J ± i Id) therefore has constant dimension on all fibers so that it is a subbundle.
The transition functions of TCM necessarily preserve T ′M and T ′′M and can therefore be
decomposed into a direct sum of transition functions of these.

The splitting extends to complex forms as well:

3.27 Def. & Prop (Splitting of Λk
CM). Let M be an almost complex manifold. Defining

the (p, q)-form bundle
Λp,q
C M := Λp(T ′M)∗ ⊗ Λq(T ′′M)∗ (41)

yields a natural splitting
Λk
CM =

⊕
p+q=k

Λp,q
C M (42)

and write Ωp,q
C M := Γ∞(Λp,q

C M) for the space of differential forms of type (p, q). The action
of J on the dual spaces of T ′M and T ′′M naturally extends to any (p, q)-form α as

Jα = i(q−p)α. (43)

Proof. Let π′ and π′′ be the projections onto T ′M and T ′′M , respectively. To split a complex
k-form α into its parts of definite type, just expand

α(X1, ..., Xk) = α
(
(π′ + π′′)X1, ..., (π

′ + π′′)Xk

)
. (44)

Collecting terms that contain π′ exactly p times yields a uniquely determined (p, k − p)-form.

Clearly, we could split the complexified tensor bundle in a very similar way, but this would
require some elaborate notation.

3.28 (Conjugation). The complexified bundles are not just complex vector bundles but also
carry a canonical notion of real and imaginary parts of vectors. For this reason, the usual
complex conjugation is well-defined. By the isomorphisms that map TCM onto T ′M and T ′′M ,
it is clear that conjugation is a (real) isomorphism between the latter bundles.
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3.29 (Associated forms). It is straightforward to check that there is a one-to-one correspon-
dence between J-invariant3 symmetric bilinear forms b ∈ T 0

2CM and (1, 1)-forms β ∈ Ω1,1
C M

by setting
b(X,Y ) = β(X, JY ) or equivalently β(X,Y ) = b(JX, Y ) (45)

for all tangent vectors X,Y in a given point.
Note that either of these forms is real or non-degenerate exactly when the other is. We will

call β positive or negative if b is positive- or negative-definite, respectively.

Integrability

3.30 Definition. A complex structure on an n-manifold M is an integrable GL(n,C)-
structure. This is equivalent to defining complex manifolds through a maximal atlas of
holomorphic charts, i.e. homeomorphisms to Cn/2, with biholomorphic transition functions.

To illustrate the different bundles on a complex manifold M and fix our notation, we
consider the local frames induced by holomorphic charts:

3.31 (Tangent space frame induced by holomorphic chart). A holomorphic chart induces
complex coordinates zj = xj + iyj , giving a real basis {∂xj , ∂yj |j = 1...n2 } of the (real)
tangent bundle TM as well as inducing a map Jx that sends ∂xi to ∂yi. This is of course also
a basis for the complexified tangent bundle TCM if we allow complex coefficients. Rewriting
this to

∂zj :=
1

2
(∂xj − i∂yj) and ∂z̄j :=

1

2
(∂xj + i∂yj) , (46)

we obtain bases of T ′M and T ′′M , respectively. These are natural generalizations of the
Wirtinger derivatives and in part motivate our consideration of the complexified tangent bundle
instead of only the holomorphic tangent bundle THM . Pulling the ∂zj back along the bundle
isomorphism THM → T ′M , defined in 3.26, we obtain the ∂xj as the natural basis for THM .
The ∂yj are not necessary here since they are identified with i∂xj .

3.32 (Cotangent space frame induced by holomorphic chart). The dual basis of Λ1
CM =

Λ1,0
C M ⊕ Λ0,1

C M is given by

dzj := dxj + idyj and dz̄j := dxj − idyj , (47)

so that a (p, q)−form α can always be written as

α =
∑

aj1...jp,k1...kq dzj1 ∧ ... ∧ dzjp ∧ dz̄k1 ∧ ... ∧ dz̄kq . (48)

We can continue the exterior differential C-linearly onto the complexified bundle. Note that
the representation of Eq. (48) then clearly implies that dα is a linear combination of uniquely
determined forms of the type (p+ 1, q) and (p, q + 1).

3.33 (Local representation of complex tensors). For any complex tensor T ∈ Γ(T r
s CM), we

will use Greek indices with or without a bar to refer to the local representation that arises
from evaluating the tensor on ∂zα or dzα with or without a bar, respectively. For example,
given a T ∈ Γ(T 1

1 CM) we would write

Tα
β = T (dzα, ∂zβ), T ᾱ

β = T (dz̄α, ∂zβ), Tα
β̄ = T (dzα, ∂z̄β), T ᾱ

β̄ = T (dz̄α, ∂z̄β), (49)

where each of these matrices contains the components of T after projecting it into one of the
subspaces of the splitting induced by J . Note that we do not regard the bar as part of the
index but rather as part of the object it is attached to.

3Due to the naturally induced action of J on a bilinear form b this just means b(X,Y ) = b(JX, JY ) ∀X,Y ∈
TpM,p ∈ M . This holds automatically for differential forms of type (1, 1).
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On almost complex manifolds, we can only say that the exterior derivative of a (p, q)-form
is a linear combination of (r, s)-forms where r + s = p + q + 1 instead of the stronger result
of 3.32. The fact that it takes a simple shape on complex manifolds is an expression of vanishing
intrinsic torsion:

3.34 Proposition (Characterizations of torsion-free almost complex structures). Let M
be a manifold equipped with an almost complex structure. The following statements are
equivalent:

(a) The almost complex structure is torsion-free.

(b) The Nijenhuis tensor Nij(X,Y ) = [X,Y ]+J [JX, Y ]+J [X, JY ]− [JX, JY ] vanishes
for all X,Y ∈ TpM,p ∈ M .

(c) The Lie bracket of two (anti-)holomorphic vector fields, i.e. sections of T ′M (T ′′M),
is itself (anti-)holomorphic.

(d) The exterior derivative of (1, 0)−forms has no component of type (0, 2).

(e) The exterior derivative of (p, q)−forms only has components of type (p + 1, q) and
(p, q + 1).

Proof.
(a) ⇐⇒ (b): This follows since the Nijenhuis tensor can be identified with the intrinsic
torsion. To see this, note that any α ∈ Γ(TM ⊗ Λ2T ∗M) in 2.18 decomposes into three
tensors α = α+ + α− + α0 defined by

α±(X,Y ) :=
1

4
(α(X,Y )∓ Jα(JX, Y )∓ Jα(X, JY )− α(JX, JY )) , (50)

α0(X,Y ) :=
1

2
(α(X,Y ) + α(JX, JY )) , (51)

for all X,Y ∈ Γ(TM) so that

Jα±(X,Y ) = ±α±(JX, Y ) = ±α±(X, JY ) and α0(X,Y ) = α0(JX, JY ). (52)

Since preimages of any α+ and α0 are readily constructed, the image of σ̃ is given by those α
with α− = 0. For any compatible connection ∇, the projection of the torsion tensor T
onto coker σ̃ is then just

T−(X,Y ) := T (X,Y ) + JT (JX, Y ) + JT (X, JY )− T (JX, JY ). (53)

After inserting its definition (14), most terms vanish per compatibility of ∇ and what remains
is proportional to the Nijenhuis tensor.

(b) ⇐⇒ (c): It is straightforward to check that

[X ∓ iJX, Y ∓ iJY ] = ([X,Y ]− [JX, JY ])∓ iJ ([X,Y ]− [JX, JY ]) (54)

holds exactly when Nij(X,Y ) = 0.

(c) ⇐⇒ (d): The (0, 2)-part of dα for any α ∈ Ω1,0
C vanishes if and only if

0 = X(α(Y ))− Y (α(X))− α([X,Y ]) ∀X,Y ∈ Γ(T ′′M). (55)

The first two terms always vanish while the third term does so for all α exactly when [X,Y ]
is always antiholomorphic.

(c) ⇐⇒ (e): The argument of the last step goes through entirely analogously for differential
forms of higher rank.
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The following important and highly non-trivial theorem asserts that torsion is indeed the
only obstruction to integrability of an almost complex manifold:

3.35 Theorem (Newlander-Nirenberg). A manifold equipped with a torsion-free almost
complex structure is already integrable.

See e.g. [11] for a proof. In the torsion-free/integrable case, we can conveniently name the
two remaining components of the exterior derivative:

3.36 Definition (Splitting of exterior derivative). Let J be an integrable almost complex
structure on a manifold M . For all α ∈ Ωp,q

C M we define the Dolbeault operators

d′α := πp+1,q(dα), d′′α := πp,q+1(dα), dc := i(d′′ − d′), (56)

where πp,q is the projection onto Ωp,q
C M .

3.37 (Differential identities). As immediate consequences of this definition and 3.34, we find

d = d′ + d′′, d′ = (d+ idc)/2, d′′ = (d− idc)/2, (57)
d′2 = 0, d′′2 = 0, (dc)2 = 0, (58)

d′d′′ + d′′d′ = 0, ddc + dcd = 0, ddc = 2id′d′′. (59)

3.38 (Dolbeault Cohomology). We call a (p, q)-form α d′′-closed if d′′α = 0 and d′′-exact if we
can find a (p, q − 1)-form β such that α = d′′β. Since d′′2 = 0, d′′ is the boundary map of a
complex, yielding the groups

Hp,q
D (M,C) :=

ker
(
d′′ : Ωp,q

C M → Ωp,q+1
C M

)
im
(
d′′ : Ωp,q−1

C M → Ωp,q
C M

) (60)

for q ≥ 0, where we understand the divisor to be trivial for q = 0. This Dolbeault coho-
mology is the complex analogue of the de Rham cohomology and the complex dimensions of
Hp,q

D (M,C) are called Hodge numbers hp,q(M). This cohomology is not a topological in-
variant since it also depends on the complex structure.

There is a complex version of Poincaré’s Lemma which guarantees local triviality analo-
gously to the de Rham case:

3.39 Proposition (Dolbeault-Grothendiek Lemma). Let α ∈ Ωp,qM be a (p, q)-form on a
simply connected complex manifold. If α is d′′-closed, then it is already d′′-exact.

For a proof, see e.g. page 25 of [12]. Another consequence of this Lemma is the following:

3.40 Proposition (Local ddc-Lemma). Let α be a closed and real (1,1)-form on a complex
manifold M . We can then locally find a real function f such that α = ddc f = 2id′d′′ f .

Proof. By the regular Poincaré Lemma, we can locally find a real β so that α = dβ. Since β
is real, we can decompose it into β = γ + γ̄, where γ is a (0, 1)-form. Moreover, since α is
a (1, 1)-form and α = (d′ + d′′)(γ + γ̄), we find d′′γ = d′γ̄ = 0. This allows us to use the
Dolbeault-Grothendiek Lemma to locally find a complex function g so that γ = d′′g. Putting
it all together, we find

α = (d′ + d′′)(d′′g + d′′ḡ) = d′d′′ Im g. (61)

Rescaling Im g yields the real f we are looking for.
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3.5 Complex volume forms as SL(n/2,C)-structures

3.41 Definition. We define a special almost complex structure on a manifold M of
even dimension n as a SL(n/2,C)-structure.

3.42 (Alternative description). A special almost complex structure on a manifold M is equiv-
alent to the choice of a complex n/2-form τ called complex volume form such that4 for all
p ∈ M

dimC ker τp = n/2 and ker τp ∩ ker τp = {0} (62)

or equivalently
τp ∧ τp 6= 0 and locally τp = θ1 ∧ ... ∧ θn/2 (63)

for some θj ∈ T ∗M . This holds as usual because the special linear group can be defined as
the stabilizer of the standard complex volume form τ0 over Cn/2. Under the almost complex
structure discussed in the next remark, the conditions in Eq. (63) simply say that a frame
exists where τ takes the form τ0.

3.43 (Induced almost complex structure). A complex volume form τ naturally induces an
almost complex structure Jτ on the manifold given by

Jτ (vp) :=

{
−ivp vp ∈ ker τp
ivp vp ∈ ker τp

(64)

This immediately yields ker τ = T ′′M and ker τ = T ′M . Moreover, τ is of type (n/2, 0), i.e. a
section of the holomorphic line bundle Λ

n/2,0
C M of the induced almost complex structure.

3.44 (Induced real volume form). Since SL(n/2,C) ⊆ SL(n,R), we also find a natural real
volume form by setting

µτ = τ ∧ τ . (65)

3.45 Definition. We define a special complex structure on a manifold M as an integrable
SL(n/2,C)-structure and refer to the associated τ as the holomorphic volume form.

The following proposition motivates the second term:

3.46 Proposition. For a special almost complex structure τ , the following statements are
equivalent:

(a) τ is integrable.

(b) τ is torsion-free.

(c) dτ = 0, i.e. τ is a holomorphic section of the canonical holomorphic line bundle with
respect to the induced almost complex structure.5

In particular, the induced almost complex structure is torsion-free/integrable if any of
these statements hold.

4We define the kernel of a complex form as ker τp := {v ∈ (TCM)p|ivτ = 0}, where iv denotes the interior
product.

5The term holomorphic will become clear in the proof of (c) =⇒ (a). While we will not go into more detail
on this, this is related to the fact that Λ

n/2,0
C M can be seen as a holomorphic line bundle if the induced almost

complex structure is integrable.
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Proof.
(a) =⇒ (b) holds trivially.

(b) =⇒ (c): Let ∇ be a torsion-free connection that is compatible with the special almost
complex structure. We calculate:

dτ(X0, ..., Xn)
Def.
=

∑
0≤i≤n

(−1)i Xi(τ(X0, ..., X̂i, ..., Xn))

+
∑

0≤i<j≤n

(−1)i+j τ([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xn)

=
∑

0≤i≤n

∑
j 6=i

(−1)i τ(X0, ...,∇Xi
Xj , ..., X̂i, ..., Xn)

+
∑

0≤i<j≤n

(−1)i+j τ(∇Xi
Xj −∇Xj

Xi, X0, ..., X̂i, ..., X̂j , ..., Xn)

In writing out the definition of the exterior derivative in the first equality, we use X̂i to denote
arguments that are skipped over. For the first set of terms in the second equality, we have
used the Leibniz rule of ∇ as well as ∇τ = 0, which by 2.17 is just the compatibility of ∇.
For the second set of terms in the second equality, we used the fact that ∇ is torsion-free in
writing [Xi, Xj ] = ∇Xi

Xj − ∇Xj
Xi. One can then see that the terms cancel each other out

by moving the ∇XiXj in the first set of terms to the first argument and rewriting the indices.
Note that the argument presented here is essentially just the general argument that ∇α = 0

implies dα = 0 for torsion-free ∇.

(c) =⇒ (a): We first show that the induced almost complex structure is integrable by con-
sidering Eq. (63): Using that τ ∧ θj and thereby its exterior derivative both vanish, dτ = 0
immediately implies ∀j : τ ∧ dθj = 0. But this just means that the dθj have no component of
type (0, 2). Since the θj locally span T ′M , by 3.34(d) this is already sufficient for the almost
complex structure to be torsion-free.

Due to the Newlander-Nirenberg theorem 3.35, we can now consider a holomorphic coor-
dinate system {zj}j=1...n/2 around any given point of the manifold. The volume form can be
expressed as

τ := f(z1, ..., zn/2) dz1 ∧ ... ∧ dzn/2, (66)

where f must be an everywhere non-zero holomorphic complex function since dτ = 0. Taking
g : Cn/2 → C to be a holomorphic function such that ∂g/∂z1 = f, we perform a holomorphic
coordinate change in the first variable according to

(z1, z2, ...) 7→ (z̃1, z2, ...) where z̃1(x) := g
(
z1(x), ..., zn/2(x)

)
. (67)

The Jacobian determinant of this transformation is just f 6= 0, so that by the holomorphic
version of the local inversion theorem it is indeed a holomorphic coordinate change. In this
coordinate system,

τ := dz̃1 ∧ dz2 ∧ ... ∧ dzn/2, (68)

so that we have seen that the special almost complex structure is integrable as well.

3.47 (Volume forms with prescribed almost complex structure). The volume forms that induce
a given J clearly stand in one-to-one correspondence to nowhere vanishing sections of the
holomorphic line bundle. By the preceding proof, the holomorphic sections are exactly those
that correspond to holomorphic, i.e. integrable volume forms. Such global holomorphic sections
exist if and only if the canonical holomorphic line bundle is a trivial holomorphic bundle.

19



3.6 Symplectic manifolds as Sp(n,R)-structures

3.48 Definition. An Sp(n,R)-structure on a manifold M of even dimension n is called
a symplectic structure if it is integrable and is otherwise just an almost symplectic
structure.

3.49 (Alternative description). The symplectic group Sp(n,R) can be defined as the stabilizer
of the 2-form ω0 over Rn that is represented by the block matrix

ω0 =

(
0 Idn/2

− Idn/2 0

)
. (69)

All non-degenerate 2-forms are pointwise similar to ω0. This can be seen by inductively
constructing a basis similarly to the Gram-Schmidt process, but using the symplectic instead
of the orthogonal complement.

We then see by 2.17 that an almost symplectic structure is equivalent to the choice of a non-
degenerate 2-form on M , called the symplectic form. Similarly to Riemannian metrics, the
symplectic form can also be interpreted as an isomorphism ϕω : TM → T ∗M, vp 7→ ωp(vp, ·).

Note that the existence of an almost symplectic structure on a manifold is equivalent to that
of almost complex and/or Hermitian structures. This is discussed in more detail in remark 3.57.

3.50 (Induced volume form). Since Sp(n,R) ⊆ SL(n,R), an almost symplectic structure
induces a volume form that can explicitly be written as

µω =
1

(n/2)!
ωn/2. (70)

3.51 (Intrinsic torsion). Considering 2.18 in the case of an almost symplectic structure ω, we
can use ϕω to identify

sp(dimM,R)⊗ T ∗M ' (Sym2 T ∗M)⊗ T ∗M and TM ⊗ Λ2T ∗M ' T ∗M ⊗ Λ2T ∗M. (71)

The image of σ̃ is then given by tensors that are first symmetrized in the first two indices and
then antisymmetrized in the last two so that coker σ̃ = Λ3T ∗M and the associated projection
map is just antisymmetrization.

Given any connection ∇ on M , one readily finds

dω(X,Y, Z) = (∇Xω)(Y, Z) + ω(T (X,Y ), Z) + cyclic permutations (72)

by replacing Lie brackets using the definition of torsion and simplifying. For compatible
connections, the first set of terms vanish and what remains is exactly the intrinsic torsion
under the identification introduced above. An almost symplectic structure is therefore torsion-
free if and only if the form ω is closed.

A theorem similar to the complex case holds:

3.52 Theorem (Darboux [13]). A torsion-free almost symplectic structure is integrable.

In other words, a symplectic structure is just a closed non-degenerate 2-form ω. For a proof
of Darboux’s Theorem based on a trick Moser used for his Theorem 3.9, see e.g. [14].

3.53 (Poisson bracket and Hamiltonian flow). Symplectic manifolds are motivated as a gener-
alization of the phase space of Hamiltonian mechanics, which is just the cotangent bundle T ∗Q
of a manifold Q that represents the position space of a system together with the negative
exterior derivative of the tautological one-form as the symplectic form.
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The generalization to symplectic manifolds M is constructed in such a way as to keep
essential tools intact: Given an energy function H ∈ C∞(M), the symplectic form induces the
Hamiltonian vector field XH via

dH = ω(XH , ·), (73)

so that the integral curves conserve ω and H. We can also define the bilinear Poisson bracket

{f, g} := ω(Xf , Xg) = Xf (g) ∀f, g ∈ C∞(M), (74)

which is skew-symmetric and fulfills Leibniz’s rule and the Jacobi identity.

3.7 Hermitian and Kähler manifolds as U(n/2)-structures

3.54 Definition. An almost Hermitian structure on a manifold M of even dimension
n is a U(n/2)-structure.

The unitary group is naturally embedded into a number of larger groups since

U(n/2) = O(n) ∩ Sp(n,R) ∩GL(n/2,C). (75)

For this reason, a U(n/2)-structure on a manifold M automatically induces a Riemannian,
almost symplectic and almost complex structure. The fact that the intersection of any two of
these three groups recovers the unitary group is reflected in the equivalent ways to explicitly
characterize the unitary structure:

3.55 Proposition. An almost Hermitian structure on a manifold M induces an almost
complex structure J , a Riemannian metric g and an almost symplectic structure ω that are
compatible in the sense that the following equivalent equations hold:

g(X,Y ) = ω(X, JY ) (76)
ω(X,Y ) = g(JX, Y ) (77)

J(X) = ϕ−1
g ϕω(X) (78)

Contrarily, a manifold M equipped with only two structures out of J , g and ω is already
almost Hermitian if and only if the uniquely determined third object defined by these equa-
tions fulfills the respective axioms of the missing structure.

Given J and a Riemannian metric g, this is the case exactly when g is J-invariant.
Given J and an almost symplectic form ω instead, it is the case when ω is both J-invariant
and positive in the sense of remark 3.29.

Proof. Eqs. (76)-(78) follow directly from the corresponding equations that hold for the tensors
over Rn that J, g and ω are modeled on.

Now let J, g and ω represent any almost complex, Riemannian and almost symplectic
structures that are compatible in the sense that these equations hold. In every point of M , we
can choose a frame of the form (e1, ..., en/2, Je1, ..., Jen/2). We can use the metric g to Gram-
Schmidt orthonormalize (e1, ..., en/2) 7→ (ẽ1, ..., ẽn/2), which extends to an orthonormal frame
(ẽ1, ..., ẽn/2, Jẽ1, ..., Jẽn/2) since g is J-invariant. In this frame, J, g and ω are given by the
tensors they are modeled on because Eq. (77) determines ω uniquely. This means that the
intersection P of the bundles corresponding to each of the structures is everywhere non-empty.
Since the unitary group can be defined as the linear transformations that simultaneously
preserve the model tensors, any two frames within a fiber of P are related by exactly one
element of U(n/2), turning P into an almost Hermitian structure.

Finally, note that for a fixed J , ω and g have to be associated forms in the sense of
remark 3.29. The statements of that remark trivially yield the conditions on ω or g that
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suffice to construct an almost Hermitian structure by defining the remaining object by one of
Eqs. (76)-(78).

Reexpressing a J-invariant Riemannian metric from a complex perspective yields yet an-
other equivalent way to describe an almost Hermitian structure:

3.56 (Hermitian metrics). Given an almost Hermitian structure (J, g, ω) on a manifold M , we
define the Hermitian metric h by

h(X,Y ) := g

(
X − iJX

2
,
Y + iJY

2

)
∀X,Y ∈ (THM)x∈M , (79)

where we have C-linearly continued the metric g to the complexified tangent bundle. The
Hermitian metric is a symmetric sesquilinear form on the holomorphic vector bundle THM .

It is straightforward to check that it can be expressed through the metric and almost
symplectic form:

h = (g − iω)/2. (80)
Conversely, taking the real part of any such symmetric sesquilinear form and doubling it re-
covers the J-invariant Riemannian metric, which according to the previous proposition suffices
to recover the whole almost Hermitian structure.

3.57 (Existence). An almost Hermitian structure exist on a manifold exactly when an almost
complex or, equivalently, almost symplectic structure exists: Given only an almost complex
structure J , we can pick any metric g and turn it J-invariant by setting

g̃(X,Y ) := g(X,Y ) + g(JX, JY ) ∀X,Y ∈ TpM,p ∈ M, (81)

which yields an almost Hermitian structure by 3.55.
Conversely, given an almost symplectic structure ω, we can again pick any metric g and

define a section A := ϕ−1
g ◦ ϕω of the endomorphism bundle. While A is not in general an

almost complex structure, the orthogonal part J of its polar decomposition is. One can show
that ω is both J-invariant and positive definite with respect to J , so that by 3.55 we obtain an
almost Hermitian structure again. The details of this argument are laid out in Proposition 12.3
of [15]. Note that the induced metric is in general different from the g we started out with.

Clearly, for a manifold to admit an almost Hermitian structure it must be orientable and
of even dimension. This is not always sufficient: Among the spheres, it turns out that only
S2 and S6 can be equipped with one. One concrete example of a topological obstruction is
that all odd-dimensional Stiefel-Whitney classes have to vanish if the manifold is compact (e.g.
page 171 of [16]).

3.58 (Real volume form). The almost Hermitian structure of course also induces a SL(n,R)
structure, i.e. a real volume form µ. It can be characterized with either the oriented Rieman-
nian or almost symplectic structures as in 3.16 and 3.50. This also implies J-invariance of the
volume form.

3.59 (Local description in holomorphic coordinates). Given holomorphic coordinates {za =
xa + iya}a=1,...,n/2, symmetry and J-invariance imply that the metric can be written as

g = g1ab
(
dxa ⊗ dxb + dya ⊗ dyb

)
+ g2ab

(
dxa ⊗ dyb − dya ⊗ dxb

)
, (82)

where g1 and g2 are symmetric and antisymmetric real matrices, respectively. The C-linear
continuation of g can then be rewritten to

g = gab̄
(
dza ⊗ dz̄b + dz̄b ⊗ dza

)
, (83)

where gab̄ = gb̄a = (g1ab + ig2ab)/2 are Hermitian matrices. The almost symplectic form can be
represented as

ω = 2igab̄
(
dza ∧ dz̄b

)
= igab̄

(
dza ⊗ dz̄b − dz̄b ⊗ dza

)
, (84)
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which by 3.50 yields the volume form

µ = (2i)n/2 det(gab̄) dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ ... ∧ dzn/2 ∧ dz̄n/2. (85)

The Hermitian metric on the holomorphic tangent bundles is given by

h = gab̄ dz
a ⊗ dz̄b, (86)

where dza and dz̄b are understood to act on vectors in THM by first applying the respective
linear and skewlinear isomorphisms from 3.26.

Hermitian manifolds and Dolbeault-Hodge Theory

3.60 Definition. A Hermitian structure is an almost Hermitian structure such that the
induced almost complex structure is, in fact, complex.

Our main motivation for considering Hermitian structures here is that they have both
well-defined Dolbeault operators and an oriented Riemannian structure that gives a C-linearly
continued Hodge star operator. Together, this allows us to extensively mimic Hodge theory,
but considering d′′ instead of d:

3.61 (Dolbeault-Hodge Codifferential and Laplacian). We define the codifferential d′′∗ :
Ωp,q(M) → Ωp,q−1(M) as

d′′∗ := − ∗ ◦ d′ ◦ ∗ (87)
for k > 0 and d′′∗f = 0 for functions f ∈ Ω0(M). The sign appears simpler than in the
Riemannian case just because we know that the dimension of a Hermitian manifold is even.
We use d′ on the right hand side so that d′′∗ is the formal adjoint to d′′ with respect to the
Hermitian L2-inner product < α, β >L2,H :=< α, β̄ >L2 . Again, (d′′∗)2 = 0 and we say α is
d′′-coclosed if d′′∗α = 0 and d′′-coexact if there exists a β such that α = d′′∗β.

The Dolbeault-Hodge-Laplacian ∆d′′ : Ωp,q(M) → Ωp,q(M) is defined as

∆d′′ = d′′d′′∗ + d′′∗d′′ = (d′′ + d′′∗)2. (88)

A k-form α is called d′′-harmonic if ∆d′′ α = 0, which again is equivalent to being both d′′-
closed and d′′-coclosed. We write Hp,q

d′′ (M) := ker
(
∆d′′ : Ωp,q(M) → Ωp,q(M)

)
for the space

of such forms.

Note that we could similarly have considered codifferentials and Laplacians of d′ or dc,
but this is not necessary for our discussion. We find a completely analogous decomposition
theorem and corollaries:

3.62 Theorem (Dolbeault-Hodge Decomposition Theorem). Let M be a compact Hermi-
tian manifold. The space of (p, q)-forms decomposes into

Ωp,q
C (M) = Hp,q

d′′ ⊕ d′′Ωp,q−1(M)⊕ d′′∗Ωp,q+1(M), (89)

and the three constituent spaces are orthogonal with respect to the Hermitian L2-inner
product.

The elaborate proof of the direct sum decomposition can be found starting on page 84
of [12]. The proofs of the following two corollaries work precisely as those of 3.20 and 3.21 in
the Riemannian case.

3.63 Corollary. Let M be a compact Hermitian n-manifold. Every element of the (p, q)-th
Dolbeault cohomology group contains exactly one harmonic (p, q)-form so that Hp,q

D (M) is
naturally isomorphic to Hp,q

d′′ (M).
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3.64 Corollary (Serre duality). Let M be a compact Hermitian n-manifold. The spaces
Hp,q

d′′ (M) and Hn/2−p,n/2−q
d′′ (M) are naturally isomorphic and the Hodge numbers satisfy

hp,q(M) = hn/2−p,n/2−q(M).

Here, the (C-skewlinear) isomorphism is given by the composition of the Hodge star and
complex conjugation.

We cannot yet make statements about the compatibility between the Riemannian and
Dolbeault Hodge theory and the usual de Rham cohomology. It will turn out that the missing
ingredient for this is the topic of the next section, namely a Kähler structure.

Kähler manifolds

Erich Kähler opened up the investigation into a class of particularly convenient Hermitian
structures in 1933 [17]:

3.65 Definition. A Kähler structure is a torsion-free U(n/2)-structure.

Clearly, a Kähler structure automatically yields a complex and a symplectic structure,
since any torsion-free U(n/2)-connection is also compatible with the induced Gl(n/2,C) and
Sp(n,R)-structures. Conversely, the following result allows us to characterize Kähler struc-
tures:

3.66 Proposition. Let M be a manifold equipped with an almost Hermitian structure
expressed through (g, ω, J) and let ∇g be the Levi-Civita connection of g. The following
statements are equivalent:

(a) The almost Hermitian structure is Kähler, i.e. torsion-free.

(b) The induced almost complex and almost symplectic structures are both torsion-free
or, equivalently, integrable6.

(c) The almost complex structure J is ∇g-parallel, i.e. ∇gJ = 0.

(d) The almost symplectic structure is ∇g-parallel, i.e. ∇gω = 0.

(e) Around each point of M , there exist holomorphic charts under which one (equivalently
all) of the Riemannian metric, Hermitian metric and almost symplectic form osculate
to second order at that point:

gαβ̄ = δαβ +O(|z|2). (90)

Proof.
(a) =⇒ (b) immediately by definition.

(b) =⇒ (c) follows directly from the formula

2 g((∇g
XJ)Y, Z) = dω(X, JY, JZ)− dω(X,Y, Z)− g(Nij(Y, Z), JX) (91)

for all vector fields X,Y and Z since we identified the intrinsic torsions with dω and Nij in 3.51
and 3.34, respectively. To see that Eq. (91) holds, use (∇g

XJ)Y = ∇g
X(JY ) − J∇g

XY and
Eq. (25) to rewrite the left-hand side. Using Eqs. (76)-(78) and the definitions of the exterior
derivative and Nijenhuis tensor, the remaining terms can be seen to equal the right-hand side
in a direct but lengthy calculation.

6This can of course be characterized in various ways, see 3.34 and 3.51.

24



(c) ⇐⇒ (d): If either the complex or symplectic structure is ∇g-parallel then the other must
be, too, due to Eqs. (76)-(78) and ∇gg = 0.

(c/d) =⇒ (a): (c) and (d) mean that the Levi-Civita connection ∇g is compatible with both
induced structures so that the connection form Ωg takes values in the Lie algebras of both of
the respective groups. But the intersection of these is just the Lie algebra of the Hermitian
structure, so that the Levi-Civita connection is compatible with it as well. Since ∇g is always
torsion-free, we have shown that the Hermitian structure must lack intrinsic torsion.

(b) =⇒ (e): We can choose a holomorphic coordinate system in every point of M since J is
integrable. After expressing ω in it, we can construct a holomorphic coordinate change using
the local inversion theorem and dω = 0 in such a way that it exactly cancels the linear terms
of gab̄. This argument is laid out in detail on page 29 of [18].

(e) =⇒ (b): Since M can be covered with holomorphic charts, the almost complex structure is
integrable. Either all or none of the mentioned structures osculate due to the local expressions
stated in 3.59. The exterior derivative of the almost symplectic structure evaluates to

dω =

(
∂gab̄
∂zc

dzc +
∂gab̄
∂z̄c

dz̄c
)
∧ dza ∧ dz̄b, (92)

which must vanish in every point by considering it in the coordinates where gab̄ osculates to
second order. This implies that the almost symplectic structure is torsion-free.

Note that condition (e) is particularly useful in that it allows us to conclude that every
identity that depends only on a Kähler metric and its first derivatives holds exactly if it holds
for the flat metric in Cn/2!

3.67 (Examples). A typical example of a Kähler manifold, besides the trivial Cm, is the
complex projective space CPm equipped with the Fubini-Study metric. The usual charts

Ψj(w1, ..., wm) := [w1, ..., wi−1, 1, wi, ..., wm] (93)

that cover the open subsets containing those rays that are not parallel to the jth axis are
readily checked to have holomorphic transition functions and thereby yield a complex structure.
Moreover, we can consistently define a real (1, 1)-form ω that can for any j be represented as

ω = ddc log(1 + |Ψ−1
j |2) (94)

on the patch covered by Ψj . One can check that this form is in fact positive and so defines a
Kähler structure.

On a complex submanifold of CPm, i.e. one where the restriction of J is a complex structure
itself, the Kähler structure naturally restricts to a Kähler structure as well. This connects
Kähler geometry to algebraic geometry: By this reasoning, all projective complex varieties
without singular points are Kähler manifolds, yielding a large class of interesting examples.
For a closer discussion of this, see e.g. [12].

3.68 (Integrability). One can calculate that the curvature of the Fubini-study metric is strictly
positive. This means that, contrary to the complex and symplectic cases, Kähler structures
are not necessarily integrable despite being torsion-free already. Otherwise, the induced Rie-
mannian structure would have to be integrable too and thereby flat.
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Curvature of Kähler manifolds

3.69 (Riemann Curvature). On a Kähler manifold, the Levi-Civita connection preserves the
complex structure. This immediately gives us one additional symmetry of the curvature tensor:

R(X ∧ Y )J = JR(X ∧ Y ) ∀X,Y ∈ TpM,p ∈ M.. (95)

Combined with its other symmetries, this also implies J-invariance of the Ricci tensor. This
allows us to define the Ricci form as the associated form to the Ricci tensor in the sense of 3.29:

ρ(X,Y ) := Ric(JX, Y ) ∀X,Y ∈ TpM,p ∈ M. (96)

3.70 Proposition. Let M be a Kähler manifold. The Ricci form ρ satisfies

ρ = iTrC(R), (97)

where R is the Riemannian curvature tensor. Moreover, the Ricci form is i times the cur-
vature form on the canonical holomorphic line bundle Λ

n/2,0
C M that is induced by the Levi-

Civita connection.

Proof. For any two vectors X and Y at a point, we calculate in local holomorphic coordinates:

iTrC(R)(X,Y ) = i dzj
(
R(X ∧ Y )∂zj

)
= (i dxj − dyj)

(
R(X ∧ Y )

(
∂xj − i∂yj

2

))
=

1

2

(
dxj(R(X ∧ Y )∂yj)− dyj(R(X ∧ Y )∂xj)

)
+

i

2

(
dxj(R(X ∧ Y )∂xj) + dyj(R(X ∧ Y )∂yj)

)
=

1

2

(
− dxj(R(Y ∧ ∂yj)X)− dxj(R(∂yj ∧X)Y )

+ dyj(R(Y ∧ ∂xj)X) + dyj(R(∂xj ∧X)Y )
)

=
1

2

(
dxj(R(∂xj ∧ JX)Y ) + dyj(R(∂yj ∧ JX)Y )

− dxj(R(∂xj ∧ JY )X)− dyj(R(∂yj ∧ JY )X)
)

=
1

2

(
Ric(JX, Y )−Ric(JY,X)

)
= ρ(X,Y )

For the fourth equality, we applied the algebraic Bianchi identity to the real part and the
imaginary terms cancel by an antisymmetry of R. The fifth equality follows by swapping
symmetries and J-invariance.

The top exterior power of the holomorphic cotangent bundle arises through the complex
determinant as an associated bundle to the frame bundle. Since its pushforward is det∗ = Tr,
the previous calculation also identifies the Ricci form as the curvature form on this associated
bundle, up to the factor i.

3.71 Proposition. Let M be a Kähler manifold. The Ricci form ρ can be written as

ρ = −1

2
ddc log det (gcd̄) . (98)
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In particular, we see that ρ is closed, and comparing it with Eq. 85 shows that it only
depends on the complex structure and volume form instead of the whole Kähler structure.

Proof. By explicit calculation of Christoffel symbols, one can verify the local expression

Rab̄ = −∂za∂z̄b (log det(gcd̄)) . (99)

for the complexified Ricci tensor. This calculation can be found in Remark 6.2 of [18]. We
do not reproduce this here and instead follow [19] in using the preceding proposition to derive
Eq. (98) in a more structural manner:

As in 2.9, we choose a local section σ to represent the (Levi-Civita) covariant derivative as
η(X)σ := ∇Xσ and the curvature as R(X∧Y )σ = dη(X,Y )σ. We will show η = d′ log det(gab̄),
because this yields Eq. (98) after using ddc = −2id′d′′ and Proposition 3.70.

The Hermitian scalar product on the tangent bundle described in 3.56 induces a Hermitian
scalar product h(α, β) := g(α, β̄) on the canonical holomorphic line bundle. Compatibility of
the Levi-Civita connection means

X(h(σ, σ)) = h(∇Xσ, σ) + h(σ,∇Xσ) = (η + η̄)(X) · h(σ, σ), (100)

or equivalently
η + η̄ = d logh(σ, σ). (101)

On a Kähler manifold, the Levi-Civita connection is also compatible with the complex struc-
ture. If we therefore choose a holomorphic local section for σ, as in 3.46, then ∇Xσ has
to vanish if X ∈ T ′′M . This implies that η is of type (1, 0). With Eq. (101), we conclude
η = d′ logh(σ, σ). In a given local holomorphic coordinate chart, σ := dz1 ∧ ... ∧ dzn/2 is a
holomorphic section with h(σ, σ) = det(gab̄) by Eq. (24) so that indeed η = d′ log det(gab̄).

As a closed form, ρ represents an element of de Rham cohomology. And not just any
element:

3.72 Proposition. For a Kähler manifold M with Ricci form ρ and first real Chern class
c1(M) ∈ H2(M,R),

[ρ] = 2π c1(M) (102)

holds.

Proof. The first real Chern class can be defined through the representative c1 := − 1
2πi TrC(R),

so that Proposition 3.70 immediately gives this result.

3.73. We can define Kähler-Einstein manifolds to be a manifold equipped with a Kähler
structure so that the induced Riemannian structure is Einstein, i.e. the Ricci tensor is propor-
tional to the metric. Since both of them arise as associated forms, this is clearly also equiv-
alent to the Ricci form being proportional to the symplectic form. We will also see later on
that the special case of Ricci-flat Kähler manifolds is equivalent to being able to locally find a
compatible complex volume form.

Kähler manifolds and Dolbeault-Hodge Theory

3.74. One of the central characteristics of Kähler manifolds with far-reaching consequences is
that our different definitions of Laplacians essentially coincide:

∆d = 2∆d′′ . (103)

We will give an overview of the principles behind this but refer to chapter 0.7 of [12] for the
full calculation. The operator L(α) := α ∧ ω on k-forms fulfills the so-called Kähler identities,
which give the possible commutators of L, the Dolbeault operators and their adjoints. These
identities all trivially follow from [L, d∗] = dc, which can be checked on Cn in a somewhat
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notationally intensive calculation. But because it contains only first derivatives of the metric,
it can be brought over to any Kähler manifold: By 3.66(e), every point has a coordinate chart
where the metric looks like the standard metric up to corrections of second order. Given the
Kähler identities and in particular that d′ and d′′∗ anticommute, deriving Eq. (103) is just a
matter of some algebraic reshuffling.

Eq. (103) has important consequences:

3.75 Corollary. If M is a compact Kähler manifold, Dolbeault cohomology is a refinement
of complex de Rham cohomology:

Hk
dR(M,C) ∼=

⊕
p+q=k

Hp,q
D (M,C) and Hk

d(M,C) =
⊕

p+q=k

Hp,q
d′′ (M). (104)

Proof. Clearly,
⊕

p+q=k H
p,q
d′′ (M) ⊆ Hk

d(M,C) due to Eq. (103). Moreover, since ∆d′′ preserves
form types by construction, the same must hold for ∆d. In particular, it commutes with the
type decomposition of any α ∈ Hk

d(M,C), so that we also have
⊕

p+q=k H
p,q
d′′ (M) ⊇ Hk

d(M,C).
The decomposition of de Rham cohomology groups then follows by identifying them with the
spaces of harmonic forms via 3.20 and 3.63.

3.76 Corollary. If M is a compact Kähler manifold, complex conjugation is a natural
isomorphism between the respective harmonic spaces:

Hp,q
d′′ (M) ∼= Hq,p

d′′ (M) so that Hp,q
D (M,C) ∼= Hq,p

D (M,C). (105)

Proof. ∆d is a real operator, so by Eq. (103) ∆d′′ is, too. It therefore commutes with complex
conjugation, making it preserve harmonicity of forms.

3.77 Corollary. The following relations of Hodge and Betti numbers hold on every compact
Kähler n-manifold M :

bk(M) =
∑

p+q=k

hp,q(M), hp,q(M) = hq,p(M), hl,l(M) ≥ 1, (106)

where 0 ≤ l ≤ n
2 .

Proof. The preceding corollaries imply the first two statements by definition. We have already
seen that the closed symplectic form ωn/2 is proportional to the non-zero volume form, so
α := ωl is a closed non-zero (l, l)-form for all 0 ≤ l ≤ n

2 . Just like ω, α and ∗α are parallel
with respect to the Levi-Civita connection. As we have seen in the proof of 3.46 (b) =⇒ (c),
this implies dα = d ∗α = 0, so that α is harmonic. Hodge’s Theorem then gives the remaining
statement.

In particular, this means that the Betti numbers bk of a compact Kähler manifold with
even k are non-zero and the ones with odd k are even. We can also generalize the local ddc-
Lemma 3.40:

3.78 Corollary (Global ddc-Lemma). Let α ∈ Ω1,1
C (M) be a real exact (1, 1)-form on a

compact Kähler manifold. Then we can find a function f ∈ C∞(M) such that

α = ddcf = 2id′d′′f. (107)

This is unique up to a constant on every connected component of M .

28



Proof. Because α is d-exact, it is also d′ and d′′-closed. Per the Hodge Decomposition with
respect to ∆d, α is orthogonal to the space of harmonic forms. It does not matter with respect
to which operator one defines harmonic here due to Eq. (103).

Therefore, the Hodge Decomposition with respect to ∆d′ is α = d′β + d′∗γ: Because α is
d′-closed, 0 = d′d′∗γ and in particular 0 =< γ, d′d′∗γ >L2= ||d′∗γ||L2 so that α = d′β.

Next up is the Hodge Decomposition with respect to ∆d′′ of β = εH + d′′ε1 + d′′∗ε2, where
εH is harmonic. Applying d′ gives α = d′d′′ε1 − d′′∗d′ε2, where we have used that the Kähler
identities imply that d′ and d′′∗ anti-commute. Because α is d′′-closed, 0 = d′′d′′∗d′ε2 and in
particular 0 =< d′ε2, d

′′d′′∗d′ε2 >L2= ||d′′∗d′ε2||L2 . What remains is just α = d′d′′ε1.
Rescaling ε1 yields the function f we are looking for. Since d and dc are real operators, it

can be chosen real as well. It is unique up to a constant on every connected component: For
two f1/2 that fulfill the ddc-Lemma, d′d′′(f1 − f2) = 0 holds. One can check e.g. in local
coordinates that this suffices to make the function f1−f2 holomorphic, which by the maximum
principle fixes it to a constant since M is compact and connected.

3.79 (Reformulation of the global ddc-Lemma). In particular we find for any two real α, α′ ∈
Ω1,1M in the same cohomology class that the ddc-Lemma applies to their (exact) difference so
that there is an f ∈ C∞(M) with

α′ − α = ddcf, (108)

which is unique up to a constant on every connected component of M .

3.80 (Kähler potential). The local ddc-Lemma applies to the symplectic form itself so that we
can locally define the Kähler potential φ ∈ C∞(M) as

ω = ddcφ. (109)

The observation is essentially what motivated Kähler to consider these structures. We can
locally describe all of the Kähler structure using φ by evaluating this equation in complex
coordinates and comparing with 3.59, which yields

gab̄ =
∂2φ

∂za∂z̄b
. (110)

Note that global Kähler potentials do not in general exist. Indeed, on a compact Kähler
manifold, it never does: The volume form is proportional to a power of the exact symplectic
form. Since the integral is invariant under addition of exact forms, this would imply vanishing
volume.

3.8 SU(n/2)-structures and Calabi-Yaumanifolds

3.81 Definition. A special almost Hermitian structure on a manifold M of even
dimension n is a SU(n/2)-structure. It is a special Kähler structure if it is also torsion-
free.

Clearly, a special almost Hermitian structure induces an almost Hermitian and a special
almost complex structure. Since

SU(n/2) = U(n/2) ∩ SL(n/2,C) = O(n) ∩ SL(n/2,C) = Sp(n,R) ∩ SL(n/2,C), (111)

we can describe it as a complex volume form that is, in an appropriate sense, compatible with
one of the other structures:

3.82 (Alternative description). A special almost Hermitian structure can equivalently be de-
scribed through an almost Hermitian structure (g, ω, Jg/ω) together with a special almost
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complex structure τ such the induced almost complex structure and real volume form match
up:

Jg/ω = Jτ and µg = µτ . (112)

This is just the usual compatibility condition that there exist frames in which the structures
simultaneously take the standard form. To see this in any point p ∈ M , pick a frame where
g, ω and Jg/w are given by the objects they are modeled on. Jg/ω = Jτ then tells us by 3.47
that τ equals some constant c times the standard complex volume form in that point p. But
µg = µτ = τ ∧ τ̄ then implies |c|2 = 1, so rotating one basis vector of the frame by multiplying
with c brings τ into standard form while leaving the other tensors invariant.

Using 3.55, this can of course be restated as compatibility of just a Riemannian metric or
just an almost symplectic form with the complex volume form and its induced almost complex
structure.

3.83 (Intrinsic torsion). The Levi-Civita connection is the only connection compatible with
the induced Riemannian structure. For this reason, a special almost Hermitian structure is
special Kähler/torsion-free if and only if the induced almost Hermitian structure is Kähler
and the Levi-Civita covariant derivative of the complex volume form vanishes. For the first of
these, various characterizations can of course be found in 3.66.

3.84 (Existence). A Kähler structure on a manifold can locally be reduced to a special Kähler
manifold exactly if it is Ricci-flat: 3.70 says that the Ricci form is essentially the Levi-Civita
curvature of the holomorphic line bundle. If it is flat, then a parallel section exists locally
by 2.9. This is just a compatible local special complex structure according to 3.47 and 3.82.
Globally, 3.47 means that such a reduction is possible exactly if the holomorpic line bundle is
trivial.

3.85 Definition. A Calabi-Yau manifold is a compact and Ricci-flat Kähler manifold.

Given the previous remarks, this is just a compact Kähler structure that can at least locally
be equipped with a compatible holomorphic volume form. Note that numerous inequivalent
definitions of Calabi-Yau manifolds can be found in the literature. The Calabi-Yau Theorem,
which is the topic of the next chapter, motivates this definition since it yields examples of
Calabi-Yau manifolds.

3.86 (Physical applications and conjectures). It is well known that consistently formulating
realistic string theories requires more dimensions than the usual four of spacetime. To be
compatible with experimental observation, the surplus dimension need to be compactified, i.e.
need to take the form of a compact manifold with a diameter so small as to be unobservable at
accessible length scales. Usually, string theories incorporating supersymmetry are considered
since they allow for fermionic degrees of freedom in line with the known particles. It turns
out that such superstring theories require Calabi-Yau manifolds for compactification (for more
see e.g. [20]). Since their exact shape largely determines physical laws at larger length scales,
string theorists have a great interest in constructing examples of these manifolds.

Physically motivated correspondences with conformal field theories have led to a number
of interesting mathematical conjectures. For example, mirror symmetry has received a large
amount of interest and has been successfully formalized in some contexts.

Chapter 6.10 of [4] gives a list of references for further reading on Calabi-Yau manifolds.

3.9 Beyond complex structures

There is a number of G-structures that come up as natural extensions of those that we have
discussed up to now. We want to give an extremely brief overview:
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3.87 (Hypercomplex structures). As we moved from real to complex manifolds, we can move
on to quaternions. A almost hypercomplex structure is a GL(n/4,H)-structure on a
manifold whose dimension n is a multiple of four. It can naturally be understood as three
almost complex structures I, J and K so that

I2 = J2 = K2 = IJK = − Id, (113)

which makes the tangent spaces isomorphic to Hn/4. The structure is hypercomplex if it
is torsion-free or, equivalently, if I, J and K are. As opposed to the complex case, this does
not suffice to imply integrability. The torsion-free connection on a hypercomplex manifold is
uniquely determined and called the Obata connection.

3.88 (Hyperkähler structures). The subgroup of the general linear quaternionic group that
preserves the standard Hermitian form on Hn/4 regarded as Rn is the compact symplectic group

Sp(n/4) = Sp(n/2,C) ∩ U(n/2). (114)

This group corresponds to an almost Hyperkähler structure. It can alternatively be
characterized as three almost Hermitian structures that share the same Riemannian metric
and whose almost complex structures assemble into an almost hypercomplex structure. It is
called Hyperkähler if it is torsion-free, which is exactly the case if it consists of three Kähler
structures. Moreover, it is always Ricci-flat.

3.89 (Quaternionic and quaternion-Kähler structures). There is a slightly larger subgroup of
GL(n,R) that can be associated with quaternions, namely GL(n/4,H)GL(1,H). The corre-
sponding structures are called (almost) quaternionic, and can be analogously reduced to
(almost) quaternionic-Kähler structures with the group Sp(n/4)Sp(1). While the latter
are not always Ricci-flat, they are still Einstein.

The only groups appearing in Berger’s classification of Riemannian holonomy groups that
are still missing are the seven and eight dimensional compact G2 and Spin(7), respectively.
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4 The Calabi-Yau Theorem

We have previously seen in 3.72 that the Ricci form ρ on a Kähler manifold is a real and
closed (1, 1)-form that represents 2π times the first real Chern class c1(M). Conversely, the
celebrated Calabi-Yau Theorem holds:

4.1 Theorem (Calabi-Yau). Let M be a compact Kähler manifold with symplectic form ω.
Given any real (1, 1)-form ρ′ that is cohomologous to its Ricci form, there exists a unique
Kähler structure on M with a symplectic form ω′ that is cohomologous to ω and whose Ricci
form is given by ρ′.

In other words, we can realize any real (1, 1)-form that represents 2π c1(M) as the Ricci form
of a Kähler structure in the same cohomology class. Eugenio Calabi conjectured Theorem 4.1
in 1954 [21, 22] and proved the uniqueness of the adapted Kähler structure. The existence
theorem on the other hand was completed only in 1976 by Shing-Tung Yau [23, 24].

In this chapter, we will first discuss implications and related results of the Calabi-Yau
Theorem. We will then go on to reformulate the theorem as an existence and uniqueness
theorem of a differential equation of Monge-Ampère-type. Finally, we will give a very rough
outline of the steps that are involved in proving it.

4.1 Some implications and related theorems

For c1(M) = 0, we immediately obtain the following result:

4.2 Corollary. Any compact complex manifold with vanishing first Chern class and Kähler
structure ω has a unique Ricci-flat Kähler structure ω′ cohomologous to ω.

This of course guarantees that every compact Kähler manifold with vanishing first Chern
class admits a Calabi-Yau structure.

We call the first Chern class positive or negative if it can be represented by a real (1, 1)-
form that is positive or negative in the sense of 3.29. This yields another straightforward
consequence of the Calabi-Yau theorem:

4.3 Corollary. Every compact complex manifold with positive (negative) first Chern class
admits a Kähler structure with positive (negative) Ricci form.

Note that we do not have to additionally assume the existence of a Kähler structure here.
This is because the real (1, 1)-form that represents the first Chern class can already supple-
ment the existing complex structure to serve as the Kähler form according to 3.55 and 3.66
(and multiplying with -1 in the negative case).

Since Ricci-flatness just means that a metric is Einstein with proportionality constant
zero, Corollary 4.2 can be seen as asserting the existence of a Kähler-Einstein structure with
vanishing scalar curvature. It is natural to ask whether one can find a stronger version of
Corollary 4.3 that yields existence of Kähler-Einstein metrics with a non-zero proportionality
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constant. In the case of negative scalar curvature, the following theorem proven independently
by both Aubin and Yau answers this question:

4.4 Theorem (Aubin-Calabi-Yau). Every compact complex manifold with negative first
Chern class admits a Kähler-Einstein structure with negative scalar curvature.

For a proof, see e.g. chapter 11.C of [19], where the proof of the Calabi-Yau Theorem is
extended to cover both at the same time.

4.5 (Existence of Kähler-Einstein metrics with positive scalar curvature). The positive case
turns out to be false in general: Remark 11.13 of [19] discusses a class of complex manifolds
with positive Chern class, originally constructed in [25], that can be proven to not admit a
Kähler-Einstein structure.

However, Tian proposed K-stability in [26] as a necessary and sufficient condition on a
complex manifold that allows this statement to hold, following a line of reasoning initiated by
Yau. In 2012, Chen, Donaldson and Sun [27, 28, 29] proved that this is indeed the case.

4.6 (Some further implications of the Calabi-Yau Theorem). Yau originally attempted to
disprove Calabi’s conjecture and even announced a counterexample in a 1973 lecture. As part
of his attempts, he derived various implications that turned into corollaries once he showed the
conjecture to be true instead [30]. Among these are the Bogomolov–Miyaoka–Yau inequality
and various existence theorems, announced together with his proof in [23].

4.2 Reformulation as aMonge-Ampère-type equation

Following approximately the discussion in chapter 5.1 of [4], we want to reformulate the Calabi
Conjecture as an existence and uniqueness theorem of solutions of a differential equation.

4.7 (Translating forms into functions). The Calabi Conjecture basically asserts that there is
a unique way of adjusting the symplectic form ω within its cohomology class to ω′ so that
the Ricci form ρ changes to any given ρ′ in its class. The global ddc-Lemma 3.79 allows us to
express both of these adjustments in terms of real functions f, φ ∈ C∞(M) that are unique up
to a constant:

ρ′ − ρ = −1

2
ddcf and ω′ − ω = ddcφ, (115)

where the factor −1/2 serves only to simplify the expressions later on. Moreover, we will fix
the constants by also requiring

1

volω(M)

∫
M

efµω = 1 and
∫
M

φ µω = 0, (116)

where µω is the volume form associated with ω.

This approach leads to the following equivalent formulation:

4.8 Theorem (Calabi reformulated). Let M be a compact and connected n-manifold
equipped with a Kähler structure (J, g, ω). Given any f ∈ C∞(M) so that ef has aver-
age value one, there exists a unique φ ∈ C∞(M) such that it has both average value zero
and

(ω + ddcφ)n/2 = efωn/2 (117)

holds.

4.9 (Local description). Describing the metric induced by ω + ddcφ in local holomorphic
coordinates {za}a=1...n/2 yields

g′ab̄ = gab̄ +
∂2φ

∂za∂z̄b
. (118)
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Moreover, since ωn/2 and (ω′)n/2 are proportional to their respective volume forms, we can
use this and Eq. (85) to rewrite the central differential equation (117) to

det
(
gab̄ +

∂2φ

∂za∂z̄b

)
= ef det (gab̄) (119)

or equivalently

log det
(
gab̄ +

∂2φ

∂za∂z̄b

)
− log det (gab̄) = f. (120)

This is a nonlinear elliptic second-order partial differential equation in φ. Since the highest-
order terms are given by the determinant of the Hessian matrix of φ, it is referred to as being
of Monge-Ampère type, see e.g. p. 441 of [31].

We will prove the equivalence of the Calabi-Yau theorem and the reformulation 4.8 in four
steps:

4.10 Proposition. Let M be a compact and connected manifold of dimension n equipped
with a Kähler structure (J, g, ω).

(a) Given any φ, f ∈ C∞(M) for which Eqs. (116) and (117) hold, ω′ := ω + ddcφ is a
Kähler structure (together with the original complex structure J).

(b) Given an additional Kähler structure (J, g′, ω′), we find the following equivalence for
all f ∈ C∞(M) with

∫
M

efµg = volg(M):

(ω′)n/2 = efωn/2 ⇐⇒ ρ′ − ρ = −1

2
ddcf (121)

(c) The Calabi-Yau Theorem implies 4.8.

(d) 4.8 implies the Calabi-Yau Theorem.

Proof.

(a): We only need to show that ω′ and J assemble into a Hermitian structure, since J remains
integrable and adding only ddcφ clearly keeps the symplectic form closed. Proposition 3.55
then tells us that we are done if ω′ is J-invariant and positive definite.

J-invariance follows since d and dc are real operators, so that ddcφ is a real form and
necessarily of type (1, 1). ω′ is positive definite if and only if, in local holomorphic coordinates,
the Hermitian matrix g′

ab̄
from Eq. (118) has only positive eigenvalues. Eq. (119) and positive-

definiteness of the original ω already imply that the eigenvalues vanish nowhere, and since they
vary continuously on the connected manifold we need to find only one point where they are
all positive. As a continuous function on a compact manifold, φ has a minimum at a point
p ∈ M . At this point, ∂2φ/∂za∂z̄b has non-negative eigenvalues so that those of g′

ab̄
are indeed

positive.

(b): In local coordinates, the left-hand side of the claimed equivalence takes the form

det
(
g′ab̄
)
= ef det (gab̄) (122)

as a consequence of Eqs. (70) and (85).
By the uniqueness of the global ddc-Lemma and the representation (98) of ρ′ and ρ, we

find that the right-hand side ρ′ − ρ = − 1
2dd

cf is equivalent to

∃c ∈ R : f = log
det
(
g′
ab̄

)
det (gab̄)

+ c. (123)

35



Comparing this with Eq. (122), what remains to be shown is that
∫
M

efµg = volg(M)
indeed fixes c = 0. To this end, we apply the exponential function to Eq. (123) and integrate
with respect to the volume form of ω. This yields∫

M

efµω = ec
∫
M

det
(
g′
ab̄

)
det (gab̄)

µω = ec
∫
M

µω′ = ec volω′(M). (124)

Since [ω′] = [ω], we find
∫
M

ωn/2 =
∫
M
(ω′)n/2 and thereby volω′(M) = volω(M) so that the

last equation allows us to conclude c = 0.

(c): Given the setting of Theorem 4.8, we define the real (1, 1)-form ρ′ := ρ− 1
2dd

cf and apply
the Calabi-Yau Theorem to it, giving us a Kähler structure expressed through ω′ and g′. The
global ddc-Lemma allows us to find a φ ∈ C∞(M) such that ω′ − ω = ddcφ and

∫
M

φµg = 0.
(b) then implies that φ is indeed a solution to Eq. (117). If there was another such φ, (a)
and (b) together would imply that this would result in a Kähler structure with the same Ricci
form, in contradiction to the uniqueness in the Calabi theorem.

(d): Given the setting of the Calabi-Yau Theorem, we define f ∈ C∞(M) through the global
ddc-Lemma so that ρ′ − ρ = − 1

2dd
cf and fix the constant as in Eq. (116). 4.8 then hands us a

real function φ with vanishing average value. Per (a), this defines a new Kähler structure that,
by (b), has ρ′ as Ricci form. If there was another such Kähler structure, the global ddc Lemma
would yield a φ̃ with vanishing average that is another solution due to (b), which would violate
the uniqueness in Theorem 4.8.

4.3 Hölder-continuous functions

To discuss the proof of existence, we need to recall some basic facts about Hölder-continuous
functions on manifolds due to their convenient regularity results. For more on analysis on
manifolds in general, we refer to Aubin’s book [32], which also covers this proof.

4.11 (Hölder spaces). Suppose f ∈ Ck(M) on a Riemannian manifold (M, g), i.e. f has
bounded derivatives up to order k ≥ 0. We call f Ck-Hölder-continuous with exponent
α ∈ (0, 1) and write f ∈ Ck,α(M) if there exists a C > 0 such that, for all x, y ∈ M whose
Riemannian distance d(x, y) is smaller than the injectivity radius δ(g) of the metric,

||∇kf(x)−∇kf(y)|| ≤ C d(x, y)α (125)

holds. For k > 0, the norm on the left hand side has to be understood as the usual norm
induced by the metric on the respective tensor space after parallely transporting one of the
terms along the unique distance-minimizing geodesic that connects x and y.

The norm

||f ||Ck,α := ||f ||Ck(M) + [f ]α (126)

:=

k∑
j=0

sup
x∈M

||∇jf(x)|| + sup
x 6=y∈M

d(x,y)<δ(g)

||∇kf(x)−∇kf(y)||
d(x, y)a

, (127)

is well-defined and turns Ck,α(M) into a Banach space.

We will need one compact embedding theorem:

4.12 Theorem. Let (M, g) be a compact Riemannian manifold, α ∈ (0, 1) and k ∈ N0. The
natural embedding Ck,α(M) ↪→ Ck(M) is compact, i.e. every bounded subset of Ck,α(M)
is relatively compact in Ck(M).

See e.g. 2.34 of [32] for a proof.
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4.4 Proof outline

This section will sketch an outline of Calabi’s and Yau’s proof. Again, we follow Joyce [4].
The continuity method is used to show existence: We know that the simpler differential equation

(ω + ddcφ)n/2 = ωn/2, (128)

i.e. if f were zero, is trivially solved by φ = 0. We connect this equation continuously with the
actual equation we want to solve by considering those equations corresponding to functions tf
for t ∈ [0, 1]. To this end, we will use the following definitions:

4.13 Definition. Let M be a compact and connected manifold M with Kähler structure
(J, g, ω). We say f ∈ C3,α, φ ∈ C5,α(M) and A > 0 satisfy the Calabi equations if∫

M

φ dµω = 0 and (ω + ddcφ)n/2 = Aefωn/2. (129)

Given α ∈ (0, 1) and f ∈ C3,α(M) we define

S :=
{
t ∈ [0, 1]

∣∣∣ ∃φ ∈ C5,α(M), A > 0 that satisfy the Calabi equations for tf
}
. (130)

While we up to now fixed f in such a way that A = 1 always works, we have left A as a
variable here instead. By the trivial solution φ = 0 for t = 0, we know that S is non-empty.
We will rely on the following three auxiliary theorems taken from [4] in order to show that S
is both open and closed:

4.14 Theorem C1. Let M be a compact and connected manifold with Kähler structure
(J, g, ω) and Q1 ≥ 0. There then exist Q2, Q3, Q4 ≥ 0 such that, for all f ∈ C3(M), φ ∈
C5(M) and A ≥ 0 that satisfy the Calabi equations and

||f ||C3 ≤ Q1, (131)

the following holds:

||φ||C0 ≤ Q2, ||ddcφ||C0 ≤ Q3 and ||∇ddcφ||C0 ≤ Q4. (132)

4.15 Theorem C2. Let M be a compact and connected manifold with Kähler structure
(J, g, ω). Let Q1, Q2, Q3, Q4 ≥ 0 and α ∈ (0, 1). There then exists a Q5 ≥ 0 such that
the following holds: For all f ∈ C3,α(M), φ ∈ C5(M) and A ≥ 0 that satisfy the Calabi
equations and

||f ||C3,α ≤ Q1, ||φ||C0 ≤ Q2, ||ddcφ||C0 ≤ Q3, and ||∇ddcφ||C0 ≤ Q4, (133)

it follows that φ ∈ C5,α(M) with ||φ||C5,α ≤ Q5. If even f ∈ Ck,α(M) for k ≥ or f ∈ C∞(M),
then φ ∈ Ck+2,α(M) or φ ∈ C∞(M), respectively.

4.16 Theorem C3. Let M be a compact and connected manifold with Kähler structure
(J, g, ω). For α ∈ (0, 1), f ′ ∈ C3,α(M), φ′ ∈ C5,α(M), A′ > 0 that satisfy the Calabi equa-
tions, it follows that for all f ∈ C3,α(M) with sufficiently small ||f − f ′||C3,α there exist
φ ∈ C5,α and A > 0 such that they satisfy the Calabi equations as well.

Showing that S is closed depends on the highly non-trivial a priori estimates C1, which
require a series of hard estimates that were supplied by Yau, as well as the regularity results
of C2.
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Proof that S is a closed subset of [0, 1]. Suppose tj is a sequence in S converging to a t′ ∈ [0, 1].
By definition of S, there exist φj ∈ C5,α(M) and Aj > 0 that satisfy the Calabi equations.
Set Q1 := ||f ||C3,α and let Q2 to Q5 be the constants resulting from applying first Theorem
C1 and then Theorem C2.

Since tj ∈ [0, 1], we can apply Theorem C1 to φj , tjf and Aj without changing the con-
stants. Theorem C2 subsequently guarantees φj ∈ C5,α(M) with ||φj ||C5,α ≤ Q5. By 4.12,
embedding this bounded subset into C5(M) yields a relatively compact set, which means that
a convergent subsequence with limit φ′ ∈ C5(M) exists. The Aj of this subsequence converge
to A′ := volω(M)

/ ∫
M

et
′fµω > 0, because one can check analogously to the reasoning around

Eq. (124) that the Calabi equations imply that the Aj must be given by volω(M)
/ ∫

M
etjfµω

and tj → t′.
Since the φj converge in C5(M) and thereby in C2(M), we can take the limit to see that

φ′ and A′ satisfy the Calabi equations for tjf . We have therefore shown that the limit point
t′ of any sequence {tj} ⊆ S also lies in S, so that S must be closed.

Openness essentially follows from C3, which was already proven by Calabi using the implicit
function theorem for Banach spaces.

Proof that S is an open subset on [0, 1]. Let t′ ∈ S, so that there are φ′ ∈ C5,α, A′ > 0 that
satisfy the Calabi equations. Given a t ∈ [0, 1], use Theorem C3 with t′f and tf instead of f ′

and f , respectively: ||tf − t′f ||C3,α = |t − t′| · ||f ||C3,α can simultaneously be made small for
any t in a small open neighbourhood of t′ so that the theorem yields the openness of S.

Now we have assembled everything we need to prove existence:

Proof of Existence in 4.8. S is a non-empty and both open and closed subset of [0, 1], so that
connectedness of [0, 1] implies S = [0, 1] and in particular 1 ∈ S: For any f ∈ C3,α(M) we can
find a φ ∈ C5,α(M) and A > 0 that satisfy the Calabi equations. However, in the setting of
the reformulated Calabi Theorem 4.8, we even have f ∈ C∞(M) so that also φ ∈ C∞(M) by
Theorem C2. As before, the Calabi equations imply that A = volω(M)

/ ∫
M

efµω, which just
equals 1 since f was chosen in such a way that ef has average value one.

Uniqueness was already proven by Calabi in [22] and more modern treatments can be found
in [4] and [18]. We give a short sketch:

4.17 Theorem C4. Let M be a connected compact complex n-manifold equipped with a
Kähler structure ω. For any f ∈ C1(M) such that ef has average value one, there exists at
most one φ ∈ C3(M) with average value zero that solves (ω + ddcφ)n/2 = efωn/2.

Proof sketch. Let ω1/2 = ω + ddcφ1/2 be two solutions to the Calabi equations so that

0 = ω
n/2
1 − ω

n/2
2 = ddc(φ1 − φ2) ∧

n/2−1∑
k=0

ωk
1 ∧ ω

n/2−k−1
2 . (134)

Stokes’ Theorem and the fact that dω1/2 = 0 yields

0 =

∫
M

d(φ1 − φ2) ∧ dc(φ1 − φ2) ∧
n/2−1∑
k=0

ωk
1 ∧ ω

n/2−k−1
2 . (135)

Essentially by using positivity and J-invariance of ω1/2 in local coordinates (see 5.3.5 of [4]), one
can see that the k = 0 term is proportional to |d(φ1 − φ2)|2 while the others are non-negative.
This means d(φ1 − φ2) = 0 and even φ1 = φ2 since M is connected and

∫
M

φ1/2 µω = 0.
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