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Abstract

An effective field theory approach is highly attractive for the model-independent
treatment of dark matter searches and allows for the consistent inclusion of renormaliza-
tion group running effects. We present a full basis for fermionic electroweak dark matter
interactions at mass dimension seven as an extension of an EFT framework for direct
detection searches by Bishara, Brod, Grinstein and Zupan. We also provide matching
between the full basis and effective theories below the electroweak scale for both light
and electroweak-scale dark matter.
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1 Introduction

To discover the nature of dark matter and unveil what we can learn from it about
physics beyond the standard model, we need to interpret and combine a spectrum
of observables from highly diverse experiments. In direct detection searches, we also
face the problem of the wide range of energy scales that are involved. This motivates
the use of a tower of effective field theories for a model-independent phenomenological
treatment of particle dark matter models. Bishara, Brod, Grinstein and Zupan [1,
2] developed such a framework to consistently incorporate leading order effects of
dimension five and six UV operators with a fermionic, electroweak multiplet dark
matter field.

In this thesis we seek to start extending this framework to effective operators of
mass dimension six by providing a full basis of UV operators and matching this onto
effective theories below the electroweak scale.

The remainder of this thesis is divided into eight chapters. The following two
chapters are very brief reviews of effective field theory and dark matter, respectively,
and serve to put this work into a broader context and introduce our notations and
conventions. In chapter four, we present the effective field theory framework for direct
detection searches that we will employ. In the fifth and sixth chapter, we discuss
the formulation of a complete basis of dimension six operators in the UV and the
subsequent matching of this basis to theories below the electroweak scale, for dark
matter that is either very light or at the electroweak scale itself. We follow this with
a discussion of methods we will use in the calculation of the anomalous dimension
matrices for the UV renormalization group running of our operators. Finally, we
discuss four different example UV models in chapter eight, which motivate the use of
this work and give concluding remarks in chapter nine.
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2 Review of Effective Field Theory

The development of effective field theories (EFTs) and the renormalization group is one
of the most influential developments in physics in the second half of the last century. In
essence, they are the systematic quantum field theory application of the general prin-
ciple to describe physical systems using only the appropriate degrees of freedom and
the most important phenomena. Important effects are commonly identified by finding
comparable parameters of which some are very small compared to others. In QFT,
the only available dimensioned parameters to compare are energies, or equivalently
distances. It is natural, then, to attempt an effective description of a full theory by
removing or simplifying high-energy, short-distance degrees of freedom beyond a mass
scale M . Alternatively, dimensionless quantities like coupling strengths or velocities
can be used to guide the construction of the effective theory.

To motivate the usefulness of EFTs we consider an n-loop amplitude of a process
at an energy scale E and small coupling α. The loop integrals can give logarithmic
contributions up to order (α ln E

µ )
n when defining the renormalized couplings at a scale

µ in a MS-like renormalization scheme. If the process happens at a scale E sufficiently
removed from µ, these large logarithms clearly lead to the breakdown of perturbation
theory. In EFTs, we will see that we can connect different scales in a renormalization-
group improved perturbation theory, effectively summing the contributions from the
leading logarithms to all orders.

In the first section in this chapter, we discuss the two different major use cases of
EFT, building theories from the top down or bottom up. The second section presents
the Wilsonian and Continuum paradigms in the explicit construction of low-energy
effective theories. The last section introduces the beta function and anomalous dimen-
sions and gives details on renormalization group improved perturbation theory.

For a more in-depth discussion of effective field theory, consider [3], [4] and Georgi’s
review [5].

2.1 Top-down vs bottom-up approach

In a top-down approach to EFTs, we start by specifying the full theory at high ener-
gies including all of its parameters. We then use one or more effective theories valid
at lower energy scales to benefit from their greater computational potential or conve-
nience, postponing for now how to find appropriate effective descriptions. Whenever
we switch from a full to an effective theory, we need to make sure that they agree at
the intersection of their respective ranges of applicability. The natural criterion for
quantum field theories is to demand that their physical S-matrix elements at this en-
ergy scale are equal within the precision of our calculation, which usually allows us to
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fix the parameters of the low-energy theory using those at high energies in a process
called matching.

Taking QFT seriously as a physical model up to high energies allows us to take an
alternative bottom-up approach to EFTs. We recognize that the best description we
have for the shortest distances is likely to be just an effective theory approximating a
more fundamental description at low energies. Taking this view makes it unnecessary
to demand renormalizability in the traditional sense, since we do not expect to find a
theory valid at all energies. As we will see later, removing heavy degrees of freedom
naturally leads to new terms in the Lagrangian that are not renormalizable in the strict
sense, suppressed with powers of the high scale. Note that this does not jeopardize the
predictiveness of the EFT because we seek to only approximate the full theory up to a
fixed order in the small parameters. The great advantage of this approach is the pos-
sibility to construct a predictive framework from only very general assumptions about
the unknown theory at higher scales: Starting from the field content and symmetries
one expects to hold, as well as a scheme to distinguish operators by the size of their
effects on dynamics, we can extend the Lagrangian of our current theory with full sets
of increasingly negligible operators:

L0 → L0 + L(1)
eff + L(2)

eff + . . .

Since operators of a higher mass than spacetime dimension must come with inverse
powers of a mass scale, usually relevant to the short-distance physics, this is a natural
power-counting scheme to consider. Such a framework now allows one to bring together
different experimental results and interpret them in a largely model-independent way.

In this thesis and future work, we employ both approaches at different stages
in our analysis: To capture the effects of a broad class of dark matter models, we
construct an effective extension of the Standard Model from the bottom-up. In order
to then derive predictions for experiments performed at very low energies after crossing
energies associated with wildly different physics, we require a tower of effective theories
for each respective scale.

2.2 Wilsonian vs Continuum EFT

Kenneth Wilson’s ansatz to construct an effective theory from a full theory of fields
φ governed by the action S[φ] is to split the fields into short-distance modes φ> and
long-distance modes φ< with respect to a cut-off energy scale Λ, and perform the
functional integral over the heavy degrees of freedom to determine an effective action
SΛ[φ<] for the remaining long-distance physics:∫

Dφ<
∫

Dφ> eiS[φ<+φ>] !
=

∫
Dφ< eiSΛ[φ<]. (1)

This averaging procedure in general generates non-local interactions between the re-
maining light degrees of freedom, which can be expressed as a series of non-renormalizable
local interactions in an operator product expansion (OPE). The respective coefficients
are called Wilson coefficients. Additionally, this expansion can give new contributions
to the existing parameters of the theory.

This construction naturally leads to a cut-off regularization at the scale Λ, which
in turn requires a mass-dependent subtraction scheme.
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One of the advantages to this philosophy is not only its intuitive ansatz, but that
the Appelquist-Carazzone decoupling theorem [6] guarantees that there is a physical
renormalization scheme for simple theories like QED that leads to the decoupling
of heavy degrees of freedom at scales sufficiently below their mass. The only effect of
their existence, up to terms that are suppressed by the ratio of the energies involved in
a given process and their mass, is the modification of the theory’s parameters. This is
not trivial, since integration over loop momenta could in principle probe all scales, and
affirms the philosophy that it is possible to build theories without taking into account
all microscopic fluctuations.

This decoupling can be understood with the beta functions and anomalous dimen-
sions describing the evolution of the theory’s parameters along energy scales. These
explicitly depend on the mass scales of all particles, allowing appropriate couplings to
tend to zero after passing a particle’s mass. Taking the point of view of the path in-
tegral, this corresponds to all modes of a massive particle being averaged over in the
construction of the effective action due to the mass gap.

However, computationally, there are significant drawbacks: Cut-off regularization
clearly breaks the manifest Poincare and gauge invariance and simple power-counting
breaks down, complicating loop calculations.

Instead, one would often like to work in the manifestly covariant dimensional reg-
ularization with a mass-independent renormalization scheme, which the Continuum
EFT approach allows. Here, the effective theory starts out as just the dimensionally
regulated full theory where the artificial mass scale µ is chosen to equal the scale E
which we want to describe. This is an appropriate choice, because the problematic large
logarithms discussed in the introduction to this chapter vanish. Additionally, while
this setup does not eliminate any degrees of freedom like a cut-off at E would, it does
modify the behaviour of the theory in the same short-distance regime beyond E [5].
Now, evolving the parameters down does not correspond to integrating out more and
more degrees of freedom, but instead corresponds to modifying the dynamics already
at lower and lower energies, all the while preserving Poincare invariance.

This procedure runs into a problem as soon as we pass the threshold of a parti-
cle mass: Using a mass-independent renormalization scheme like MS prevents the
automatic decoupling of heavy degrees of freedom through the evolution functions,
which are discussed in more detail in the next section. Instead, the threshold mass
dependence has to be put in by hand: Whenever we pass a particle mass threshold,
we remove that particle from our theory. Using the same procedure as in Wilsonian
EFT, but for the whole particle at once, now induces new effective operators between
the remaining fields, which we can determine in exactly the same matching procedure.

While both approaches can be considered ultimately equivalent, we follow the
continuum method in this thesis due to its calculational convenience.

2.3 Beta functions and anomalous dimensions

We now want to discuss in detail how to perform the evolution down energy scales
between masses. Here, we consider a mass-independent scheme in dimensional regu-
larization, but the procedure works very analogously in Wilsonian EFTs.
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Given a coupling constant and mass renormalized by g0 = Zg g µ
ε and m0 =

Zmm, we start from the fact that the bare coupling is independent of µ. This leads
us immediately to the renormalization group equations in d = 4 − 2ε-dimensional
regularization as

dg(µ)
d lnµ

= β(g(µ))− εg(µ),
dm(µ)

d lnµ
= −γm(g(µ)) m(µ), (2)

where
β(g) = −g 1

Zg

dZg

d lnµ
, γm(g) =

1

Zm

dZm

d lnµ
(3)

are the beta function and anomalous dimension of the mass. In our mass-independent
renormalization scheme we can derive these function directly from the 1/ε pole of the
renormalization constants:

β(g) = 2g3
dZ(1)

g (g)

dg2
, γm(g) = −2g2

dZ(1)
m (g)

dg2
, (4)

where the superscript (1) indicates the terms proportional to 1/ε. For the detailed
derivation of these formulae, see e.g. Buras [4]. The RG equations can alternatively,
from an EFT point of view, be seen to be a result of ’continuously’ matching a theory
at µ down to a theory at µ− dµ.

Solving these evolution equations allows us to compare coupling constants and
masses defined at different scales as well as experimental observations performed for
different energies, without introducing the large logarithms that we discussed in the
introduction to this chapter. A detailed analysis shows that even though the beta
function is calculated to a fixed order, this approach effectively includes the leading
logarithmic corrections to all orders.

In an EFT, we often additionally have to renormalize the Wilson coefficients
and calculate their running. We write the unrenormalized Wilson coefficients as a
row vector C0 and the respective operators as a column vector Q0, so that the non-
renormalizable part of the Lagrangian can be written as C0Q0. To renormalize, we
introduce the matrix Z, since one operator can in general generate contributions to
others at loop level:

C0 = CZ. (5)

Note that in the calculation of the renormalization matrix, the contributions of replac-
ing the unrenormalized fields and couplings in Q0 must be taken into account. We can
again derive renormalization group equations from the scale-independence of the bare
coefficients:

dC(µ)
d lnµ

= γT (gi(µ)) C(µ), (6)

where the anomalous dimension matrix γ is given by

γ = Z
d

d lnµ
Z−1. (7)

Working in the MS scheme at lowest order in the couplings and expanding the renor-
malization matrix in ε poles, we find that at one-loop

γ = 2Z(1), (8)
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where Z(1) is the part of Z that scales with 1/ε.
Note that the necessity of allowing non-diagonal elements opens the possibility of

operator mixing: During the running, operators with large matrix elements can mix
into operators with small ones, non-trivially affecting the phenomenology of the theory
at low scales.
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3 Review of DarkMatter

While evidence for the existence of dark matter is numerous, the exact nature of this
phenomenon remains elusive and emerged as one of the central problems of modern
fundamental physics. It is one of the clearest signs motivating the necessity of physics
beyond the standard model and solving this puzzle is likely to open novel research
venues. The umbrella term ’dark matter’ is applied to forms of matter that do not
significantly interact electromagnetically, but whose gravitational influence accounts
for a plethora of experimental observations.

The remainder of this short review chapter is divided into three sections: First,
we go through some of the indirect experimental observations suggesting dark matter.
Second, we give a very rough overview of different theories incorporating it. And last,
we discuss the strategies and results of active searches for dark matter.

3.1 Experimental status

Useful reviews that provide much more detail on existing experimental research can
be found, for instance, in [7] or [8].

3.1.1 Direct gravitational anomalies

The first experimental indication of dark matter that essentially held true were Fritz
Zwicky’s 1933 observations of the Coma galaxy cluster [9]. Using the virial theorem
to estimate its total mass from red-shift velocity measurements, he concluded that the
significantly smaller mass of visible matter would have to be supplemented by non-
luminous matter.

Since then, this line of evidence has been reinforced through the study of many
more clusters. Moreover, cluster masses and thereby the ratio of luminous to dark
matter is measured in two additional, independent ways: On one hand, space probes
like the Chandra X-ray observatory allow for the estimation of densities of hot gases
in galaxy clusters from their thermal X-ray radiation, which can be used to infer the
cluster mass since the thermal pressure must be counterbalanced by gravity. On the
other hand, gravitational lensing can be used for this purpose - as per general relativity,
the clusters’ total mass distorts the light coming from sources behind it.

A particularly convincing example is the study of the Bullet Cluster, which is
formed from two clusters that, on a cosmological timescale, collided recently. This led
to a separation of the stars’ and gases’ centers of mass, since only the gases palpably
interacted with each other. The latter has the higher portion of the luminous mass,
but gravitational lensing shows mass peaks close to the stars. Taking into account also
a massive halo of negligibly interacting dark matter would predict exactly this, while
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theories that postulate modifications of Newtonian or Einsteinian dynamics struggle
to explain this.

Rubin and Ford [10] introduced another strong argument for dark matter from the
motion within galaxies while studying galaxy rotation curves in the 1960s. These plot
the mean orbital speeds of stars and hydrogen gas against the distance from the galactic
core, measured using red-shift spectroscopy in edge-on galaxies. Assuming a Keplerian
orbit, one would expect a scaling behaviour of v ∼ 1/

√
r since most of the mass

is located near the galactic core, but measurements instead show an approximately
constant velocity of v ≈ 240 km/s [7]. This is consistent with a halo of dark matter
surrounding the luminous matter, with a density scaling like ρ ∼ 1/r2 in its vicinity.
Using lensing, the existence of a dark matter halo can be inferred on larger distances
from the galactic core.

The density of dark matter in our local neighbourhood is especially important in
the context of direct detection measurements. This can be estimated by tracking the
movement of stars in the vicinity of the sun or on a larger scale using rotation curves
of the Milky Way. The first approach suffers from large statistical uncertainties, while
the second approach is somewhat challenging from within the Milky Way, and heavily
depends on assumptions on the shape of its dark matter halo1. A review [11] lists
recent determinations, which usually fall between 0.2 and 0.5 GeV cm−3. The local
velocity distribution of dark matter can be estimated with simulations, yielding an
approximately Maxwellian distribution, differing mostly through a more pronounced
tail in high velocities. This could especially affect light dark matter measurements.
The distribution is usually described by its average velocity of roughly 270 km/s [8].

3.1.2 Cosmological arguments

Beyond observations of current gravitational dynamics on large scales, the influence
of dark matter on the evolution of the universe opens the possibility of finding ef-
fects in cosmological observables. Competing theories are usually distinguished in a
simultaneous fit of a large number of such observables. The best fit supports the so-
called ΛCDM model, which posits the existence of a cosmological constant Λ together
with cold, i.e. non-relativistic, dark matter. The Particle Data Group [7] finds the
following values for the relic mass densities Ω, normalized to the critical density of a
flat universe:

Ωnbmh
2 = 0.1168± 0.0020, Ωbh

2 = 0.02226± 0.0020, (9)

where the left and right values represent non-baryonic dark matter and baryonic mat-
ter, respectively, and h = H

100
s·Mpc

km with the Hubble constant H. While the term ‘dark
matter’ can encompass different phenomena, this suggests that at most a small frac-
tion of dark matter will consist of non-luminous baryonic matter.

The rest of this subsection will discuss how some specific observations have an ef-
fect on this best fit and thereby underpin the existence of dark matter.

The Cosmic Microwave Background (CMB), which was predicted by Gamow in
the 1940s and first detected by Penzias and Wilson in 1964, consists of thermal pho-
tons from the early universe that propagate unimpeded since recombination decoupled

1Combining these different measures can conversely yield information about the dark matter halo
distribution, usually favoring a spherical halo [11].
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them from matter. While originally peaking in visible and UV radiation, the expansion
of the universe caused a redshift to the microwave spectrum with an equivalent tem-
perature of 2.7 K. It is remarkably isotropic, but its minuscule angular anisotropies of
the order of 10−5 allow us to probe the physics of the early universe. This is usually
studied by expanding the fluctuations in spherical harmonics, resulting in a multipole
spectrum, which can be predicted in specific models of cosmic evolution. One example
relevant to dark matter physics are the acoustic oscillation peaks in this spectrum,
roughly between the 100th and 1000th multipole moments. The inhomogeneities led
to restoring oscillations in the proton-electron plasma while still coupled to the pho-
tons, which we observe after they freeze out. Since the multipoles are associated with
different length scales, and these oscillations take longer the larger the scale we are
considering is, higher multipoles correspond to measuring the anisotropy after a longer
timespan of oscillations. The shape of the spectrum is thereby directly connected
to the dynamics of an oscillating plasma over time. Every peak alternatingly repre-
sents either the point in time when the collapsing plasma led to an overdense region
or when the expanding plasma led to an underdense region. The presence of dark
matter, which does not build internal pressure and therefore clumps easier, leads to a
more pronounced anisotropy for those (odd-numbered) peaks, where the dark matter
supports the oscillatory collapse with its gravity.

Today’s best measurements of the CMB spectrum stem from satellite probes,
namely the Cobe, Wmap and most recently the Planck [13] experiments, whose re-
sults are depicted in Fig. 1.

The relative abundances of elements resulting from big bang nucleosynthesis de-
pend only on the baryon-to-photon ratio, which makes it highly sensitive to the density
of baryonic matter at the point of its inset. This allows us to calculate constraints on
the baryonic matter density of roughly [14]

0.018 < Ωbh
2 < 0.023. (10)

Note that this assumes the baryonic dark matter to be available to this process, which
is e.g. not the case for primordial black holes.

(a) Temperature fluctuations across the sky (b) Angular power spectrum

FIG. 1. Planck measurements of the Cosmic Microwave Background [12].
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Furthermore, the existence of dark matter heavily affects the formation of large-
scale structures out of the small inhomogeneities in the early universe, which can be
simulated numerically or semi-analytically. The propensity of dark matter to clump
allows it to form a backbone on which normal matter can accumulate faster than
without it. These simulations typically suggest cold dark matter, which extends as
filaments beyond the halos of galaxies and clusters.

Distance and acceleration measurements with Type Ia supernovae strongly con-
strain the dark energy and thereby indirectly also the dark matter relic density.

3.2 Darkmatter models

The most active avenue of research in building theories of dark matter is the particle
dark matter paradigm, which seeks to extend the standard model with additional fields
whose excitations make up the observed dark matter halo. We give a few examples of
such models:

WIMPs are weakly interacting massive particles. Their popularity is motivated by
the so-called ’WIMP miracle’, which refers to the observation that the relic abundance
of dark matter observed today could be naturally explained by a particle with a mass
of hundreds of GeV that couples to the standard model with a force of roughly the
strength of the weak force and freezes out in the early universe. Moreover, super-
symmetric extensions of the standard model readily provide such particles, such as
neutralinos, gravitinos, gauginos or admixtures, whose stability can be naturally en-
sured by R-parity as the lightest supersymmetric particle. Similarly, models with extra
dimensions can supply WIMPs as lightest Kaluza-Klein particle.

Axions are Goldstone bosons related to an additional, spontaneously broken U(1)
symmetry. This symmetry was proposed in 1977 by Peccei and Quinn [15] to explain
the strong CP problem in QCD, i.e. the very small value of the CP -violating θ term.
While the original model was ruled out, similar mechanics remain viable candidates
to give a simultaneous explanation of cold dark matter. Many Axion-specific searches
such as the ALPS experiment [16] try to detect Axions through the possibility of
turning photons into axions and vice-versa in the presence of very strong magnetic
fields.

Neutrinos have been proposed as dark matter candidates, especially in the context
of the standard seesaw mechanism, which would explain small neutrino masses but also
posit them to be Majorana particles and imply the existence of right-handed neutrinos.
These would be sterile, i.e. only interacting gravitationally. However, as an example of
a hot dark matter theory, they could only make up a fraction of the total dark matter,
due to the cosmological considerations mentioned in the last section.

We also want to give two examples outside of the particle dark matter paradigm:

MACHOs are massive compact halo objects such as black holes, neutron or very faint
stars. Searches for such objects in the Milky Way using gravitational lensing exclude
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a large range of reasonable models. Usually, MACHOs are counted as baryonic dark
matter, although primordial black holes, which did not affect nucleosynthesis, are often
categorized as non-baryonic.

Topological defects such as cosmic strings can arise as remnants of phase transi-
tions in the early universe, and can carry very significant masses. Possible experimen-
tal signatures include the distinct lensing they would produce as well as the ’loops’
they can radiate through oscillations and collisions, which would decay to gravita-
tional waves that could in turn be detected in gravitational observatories. While they
are already predicted to rarely occur from our current understanding of the universe’s
evolution, the Gaussian nature of the CMB anisotropies strongly suggests that they
make up at most a small part of the anomalies associated with dark matter.

An entirely different approach to the experimental findings is given by Modified
dynamics theories, which posit that the relativistic or approximated Newtonian
treatment used to interpret the observations of the last section has to be corrected in
an encompassing theory. The most prominent theory was Milgrom’s Modified New-
tonian Dynamics (MOND, [17]), which modifies Newton’s laws for extremely small
accelerations for which it is not well-tested. However, it suffered from being inherently
non-relativistic and in predicting the behaviour of clusters and the CMB. Another very
recent attempt is Verlinde’s emergent quantum gravity [18].

A challenge to these theories is usually to give equally good predictions as dark
matter models to situations where the different behaviour of luminous and dark mat-
ter leads to a separation between them. An example would be the Bullet Cluster dis-
cussed in the last section, as well as the difference between odd- and even-numbered
oscillations in the CMB.

3.3 Searches for darkmatter

The different approaches to general searches for dark matter particles can be roughly
categorized as either (i) direct detection experiments, where we look for scattering
between the invisible, relic dark matter and standard model particles, (ii) indirect
detection, where we look for annihilation products of accumulated dark matter, or
(iii) collider searches, where the production of dark matter particles is attempted in
high energy collisions. This is visualised in Fig. 2 and will be discussed one by one in
the following three subsections.

(a) Direct detection (b) Indirect detection (c) Collider searches

FIG. 2. Visualisation of dark matter search paradigms. Time always flows to the right.
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3.3.1 Indirect detection

The indirect detection approach argues that dark matter particles accumulate in the
gravitational potential of heavy objects such as the galactic core or stars. This higher
than average density in many specific models allows for an appreciable increase of the
annihilation rate into standard model final states. Additionally, one could expect to
find decay products for dark matter models that predict decays with a sufficiently long
lifetime.

The (possibly secondary) products usually are stable particles like electrons, positrons,
photons, neutrinos or (anti-)protons; antimatter in particular having the advantage of
lower backgrounds. Experimentally, they are picked up by detectors for gamma rays,
neutrinos or cosmic rays. This includes cases where the final state particles interact
with other material themselves, such as positrons annihilating with the interstellar
plasma and producing a typical 511 eV signal.

Gamma rays have the advantage of a clear spatial origin and preserving spectral
information. However, the earth’s opacity in these frequencies makes it necessary to
perform observations either directly from space, a current example being the Fermi
Gamma-ray Space Telescope[19], or using ground-based atmospheric Cherenkov tele-
scopes.

Neutrino detectors obviously require massive amounts of detector material to ac-
cumulate sufficient data by collecting Cherenkov photons that result from products of
neutrino interactions. They share the advantages of gamma ray searches. A currently
competitive experiment is the IceCube neutrino observatory [20].

A challenge to both these types of searches is the uncertainty associated with the
expected background signals from unrelated astrophysical processes in the origin re-
gions, which are often imperfectly understood by themselves. This poses less of a
problem for cosmic ray experiments, which exhibit a much smaller background espe-
cially for antimatter. But they do not provide spatial information on the source of
the signal due to the complex dynamics of cosmic ray propagation. An example of
a detector is the Alpha Magnetic Spectrometer mounted on the International Space
Station [21].

A sufficiently strong signal in any of the spatially resolved experiments would have
the additional advantage that they allow for independent probes into the dark matter
distribution. A more thorough discussion of current indirect detection experiments
can be found in [22].

3.3.2 Collider searches

If the center of mass energy is sufficiently high, we expect to pair produce dark matter
particles in collider experiments. The central indication for their production would be
signatures with missing energy or momentum, since the products would be invisible to
the detectors and stable on cosmological lifetimes. This is often implemented in mono-
jet searches, because they allow to select events without any other visible particles
in the final state and the jet recoils visibly against the missing momentum. The jet
is easily attached via a gluon radiating of the initial state quarks without interfering
with the dark matter production itself.

14



A drawback of this approach is that it is impossible to determine from only this
signal whether the new particle really contributes sizably to the dark matter responsi-
ble for the experimentally observed anomalies. That is, one can only find dark matter
candidates. Collider experiments are also complementary to other searches in that they
are better suited to detect light dark matter scenarios and limits can be combined in
effective field theory approaches or simplified models.

3.3.3 Direct detection

Direct detection experiments aim to observe the recoil in normal matter resulting
from a collision with a dark matter particle within a detector. Due to the small
cross-section, experiments aim to comprise a very large volume of detector material.
To keep the background from radiation and especially cosmic rays minimal, they are
located in underground facilities.

The central observable of these experiments is the number and deposited energy
of nuclear recoil events. Disregarding background events, this connects to the theory
through the differential recoil rate

dR
dE

=
ρ

mAmχ

vesc∫
vmin

d3v v f(v)
dσ
dE

(v,E), (11)

where ρ is the dark matter density in our immediate vicinity, mχ is its mass, f(v) its
velocity distribution and σ the interaction cross-section with the given nucleus of mass
mA [23]. The integral runs from the smallest kinematically allowed velocity vmin to
the galactic escape velocity vesc. In order to interpret nuclear recoil data, we clearly
need independent information on the dark matter density and distribution from the
sources discussed earlier in this chapter.

FIG. 3. PDG compilation of WIMP direct detection exclusion limits [7]. The cross section is given for
spin-independent coupling. The deep blue region is an ATLAS scan of the MSSM parameter space,
the other shaded regions are areas of supposed signal events.
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In direct detection experiments, the energy of an event is essentially deposited
into one of three channels: Photons from scintillation, electrons from ionization or
vibrations. Many experiments access two of these channels to distinguish between
electronic and nuclear recoil signals, and fall into roughly two categories:

Experiments like EDELWEISS or CRESST use cryogenically cooled crystals to
detect phonons created by the impact. The former additionally measures the number
of electrons produced by ionization, while the latter uses scintillating crystals to detect
photons.

Noble liquid detectors, like the LUX experiment, detect both the scintillation re-
sulting from the impact as well as a time-delayed proportional scintillation signal from
ionization electrons.

The current exclusion limits from direct detection experiments as collected by the
PDG are displayed in Fig. 3.

Since the experiments are usually sensitive to recoil energies in the O(10 keV) range
and the nucleon mass is known, the momentum transfer is bounded from above at
roughly 200 MeV [1].
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4 An EFT framework for direct detection searches

Vastly different scales of energy are involved in a typical direct detection experiment.
For a consistent treatment of the detection phenomenology in a systematic framework,
a tower of effective field theories is therefore a very appealing setup, connecting all
scales from the theory at high energies, down to the nuclear scale involved in the
detection itself. We align our treatment with such a framework described by Bishara,
Brod, Grinstein and Zupan [1, 2], extending its scope to effective operators of mass
dimension seven in the UV.

The different theories in this description are displayed in Fig. 4. Interactions be-
tween DM and SM are either weak gauge interactions or non-renormalizable effective
operators induced by a mediator sector at a heavy scale Λ. After passing the elec-
troweak scale vEW , we express the theory in the broken fields and integrate out the
top quark and massive gauge bosons. We treat two cases, where the dark matter is
either very light or comparable to vEW . In the latter case, we also transition to Heavy
Dark Matter Effective Theory (HDMET). Thereafter, we pass the bottom and charm
quark mass thresholds, integrating out the respective particles along the way.

Once we arrive at the scale of chiral symmetry breaking Λχ ≈ 1 GeV, QCD per-
turbation theory starts to break down. To remedy this, we need to nonperturbatively
match onto theories at lower energies. First, a (Heavy Baryon) Chiral Perturbation
Theory (HBChPT) that describes the dark matter interactions with nucleons and pi-
ons needs to be constructed. This in turn is used, after extracting the most important
contributions using chiral counting in a Chiral Effective Theory (ChEFT), to calculate
the coefficients in an effective theory describing the DM-nucleus scattering. This pro-
cedure at low energies is analogous to the treatment in [2], but needs to be extended
for our analysis, which we relegate to future work.

FIG. 4. Visualization of all scales and theories in the EFT framework, adapted from [1].

17



Taking into account the renormalization group flow of Wilson coefficients is phe-
nomenologically important even for order-of-magnitude estimations: UV Wilson co-
efficients that would naïvely contribute only to velocity-suppressed interactions in the
non-relativistic limit can mix into unsuppressed matrix elements during RG running.
The same can also result from a coherence effect that leads to the enhancement of
spin-independent matrix elements with respect to spin-dependent ones by the square
of the nucleon number of the nucleus involved in direct detection experiments. The
importance of these effects have been discussed elsewhere in more detail, e.g. [24, 25].

This framework exhibits the usual advantage of EFTs in that it is possible to
combine observational limits from different experimental searches as constraints on
the UV Wilson coefficients without limiting oneself to any particular model of dark
matter. Of course, there are factors limiting the range of applicability of this approach:
For direct detection experiments, the mediator scale must at least be higher than the
momenta exchanges, i.e. ∼ 200 MeV. For indirect detection, it must be larger than
the dark matter mass scale, at which its annihilation or decay happens. For collider
experiments, the mediator scale must exceed the collision energy, which for reasonable
Λ prevents the use of this framework with LHC data.

In the first section of this chapter, we will go through the details of the dark
matter scenario covered by our analysis. The remaining three sections describe the
effective theories at very high energies, directly below the electroweak scale and at low
energies, respectively.

4.1 Our darkmatter scenario

Our effective description covers a single fermionic particle χ, either Dirac or Majorana,
that transforms trivially under SU(3) and according to an irreducible representation of
the weak SU(2). The candidate for dark matter would be given by the uncharged
component χ0 after electroweak symmetry breaking. Since direct detection experi-
ments exclude additional Dirac particles coupling to the Z boson up to very high
energies (see e.g. [26])2, we conclude χ must have zero hypercharge. It then follows
by the Gell-Mann Nishijima relation Q = τ3 + Yχ that in order to be able to find an
electrically neutral component of χ, it must transform under an odd-dimensional irre-
ducible representation of SU(2). We do not put constraints on mχ by demanding it
to be a thermal relic.

We furthermore assume the existence of a symmetry such as Z2 to explain the
stability of the dark matter particles. This has the effect of disregarding effective
operators with an odd number of χ particles.

To simplify our analysis, this work specifically assumes that the Wilson coefficients
at dimension five and six in [1] all vanish, since any sizeable coefficient would likely
mean that the treatment in [1] would suffice to search for this model using those
operators.

We give a few example models that can be described in this framework in chapter 8.

2We do not consider the more complex scenario where the DM can arise as an admixture of dif-
ferent multiplets here, for which we cannot rule out Yχ 6= 0 this way.
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SU(3) SU(2) U(1)

Q 3 2 +1/6
L 1 2 -1/2
U 3 1 +2/3
D 3 1 -1/3
E 1 1 -1

G 8 1 0
W 1 3 0
B 1 1 0

H 1 2 +1/2

χ 1 N
SU(2)
χ Yχ

TABLE I. The particle content of the effective theory in the UV. The Q and L fields are left-handed
Weyl fermions, while the other fields in the first block are right handed. The fields in the second block
are the gauge bosons corresponding to the SM symmetries, H is a spin 0 scalar and χ is the spin
1/2 dark matter field (either Majorana or Dirac). For U(1), we give the hypercharge, while for the
other gauge groups we give the dimension of the irreducible representation. We use four-component
notation for all fermions. N

SU(2)
χ = 2Jχ + 1 is the dimension of the DM representation of SU(2).

4.2 Effective description at high energies

The full particle content of our UV theory is given in Tab. I, including their represen-
tations under the gauge group U(1)× SU(2)× SU(3).

For reference, the Lagrangian is given by 3

L = Lgauge + Lhiggs + Lmatter + Lyukawa + LDM + Leff

Lgauge = −1

4
BµνBµν −

1

4
Wµν

a W a
µν −

1

4
Gµν

a Ga
µν

where


Bµν = ∂µBν − ∂νBµ

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ε

abcW b
µW

c
ν

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + g3f

abcGb
µG

c
ν

Lhiggs = |DµH|2 − V (H)

where V (H) = −µ2H†H +
λ

4
(H†H)2

Lmatter =

Ng∑
k=1

(
Q̄ki /DQk + L̄ki /DLk + Ūki /DUk + D̄ki /DDk + Ēki /DEk

)
Lyukawa = −ytQ̄a

3ε
abH†bU3 + h.c.

3To set our conventions, the Clifford-Algebra of gamma matrices is given by {γµ, γν} = 2ηµν ,
where ηµν = diag(1,−1,−1,−1). We define σµν := i

2
[γµ, γν ], γ5 := iγ0γ1γ2γ3, and choose the Levi-

Civita tensor to fulfill ε0123 = 1. The left and right-handed projectors are given by PR/L = (1±γ5)/2.
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Greek indices are Lorentz indices while latin indices are either adjoint SU(2) or SU(3)
indices, depending on the context, and εabc and fabc are the respective structure con-
stants. The covariant derivative is given by

Dµ := ∂µ − ig1BµY − ig2W a
µτ

a − ig3Gb
µt

b, (12)

where Y is the hypercharge of the field it is acting on and τa and tb are the generators
in the appropriate representation of SU(2) and SU(3), respectively.

The dark matter Lagrangian LDM is given by

LDM = χ̄(i /D −mχ)χ (13)

for the case of Dirac particles and

LDM =
1

2
χ̄c(i /D −mχ)χ (14)

for Majorana dark matter, which fulfills the Majorana condition χc = χ.
The effective Lagrangian Leff contains a full operator basis at the given mass dimen-

sion of interest and will be discussed in more detail in chapter 5, where we construct
this basis.

Note that we keep our discussion minimal by requiring all interactions to be flavor-
diagonal and only keep the top Yukawa coupling. Additional terms that appear in the
Lagrangian through a gauge-fixing procedure will be discussed in chapter 7.

Classical equations of motion

For the sake of completeness, we now list the equations of motions derived from the
Lagrangian using standard functional methods. For the fermionic fields of the standard
model

i /D Q = 0, i /D L = 0, (15)
i /D Ui = δ3i ytεH

†U3, i /D D = 0, (16)
i /D E = 0 (17)

hold, as well as

DµD
µ H =

(
µ2 − λ

2
H†H

)
H (18)

for the Higgs boson, while the gauge field strength tensors fulfill

DµBµν = ∂µBµν = −g1
∑
f

Yf f̄γνf + ig1
2
H†

↔
Dν H, (19)

DµW a
µν =

(
∂µδab − g2ε

abcWµ,c
)
W b

µν = −g2
∑
f

f̄ τaγνf + ig2H†τa
↔
Dν H, (20)

DµGa
µν =

(
∂µδab − g3f

abcGµ,c
)
Gb

µν = −g3
∑
f

f̄ taγνf, (21)
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where f is any fermion and
↔
Dµ:=

←
Dµ −Dµ. For a Dirac or Majorana dark matter field,

the Dirac equation
(i /D −mχ)χ = 0 (22)

holds.
Note that the effect of the existence of effective operators in the Lagrangian is

not taken into account, which leads to additional terms suppressed by powers of the
mediator scale Λ. The validity of these equations for our purposes is discussed in detail
in 5.2.

4.3 Effective description below the electroweak scale

Below the electroweak scale, the Higgs field H acquires a vacuum expectation value
vEW by virtue of its potential V (H), so that we need to perform a field redefinition to
use standard perturbative methods. We set

H :=

(
G+

1√
2
(vEW + h+ iG0)

)
, (23)

where h is the Higgs boson and G0,+ are Goldstone bosons.
However, the Higgs gauge interactions induce mass terms for the SU(2) and U(1)

gauge bosons. In order to switch to the mass eigenbasis, we rotate by the Weinberg
mixing angle ϑw. Additionally, we split up the fermion fields along the broken SU(2)
symmetry:(

Zµ

Aµ

)
:=

(
cw −sw
sw cw

)(
W 3

µ

Bµ

)
,

(
W+

µ

W−µ

)
:=

1√
2

(
1 −i
1 i

)(
W 1

µ

W 2
µ

)
,(

uL

dL

)
:= QL,

(
νL

eL

)
:= LL,

(24)

where we have introduced the shorthands sw := sinϑw and cw := cosϑw. Now, the
gauge and Higgs boson masses are given by

mW± = g2
vEW

2
, mZ =

√
g21 + g22

vEW

2
, mh = vEW

√
λ/2, (25)

where we have used the Higgs quartic coupling, which is roughly of order one, to express
the Higgs mass in terms of the electroweak scale. Considering this, we integrate out
the heavy degrees of freedom W±, Z and H. For convenience, we also introduce the
electric charge

e :=
g1g2√
g21 + g22

= g2sw = g1cw. (26)

These redefinitions lead to the following covariant derivative:

Dµ = ∂µ − ig3T aGa
µ − ieQAµ − ie

swcw

(
τ3 − s2wQ

)
Zµ − ig2√

2

(
τ+W+

µ + τ−W−µ
)
, (27)

where τ± := τ1 ± iτ2 and the Gell-Mann Nishijima relation Q = τ3 + Yχ holds. For
matching our operators onto the basis below the electroweak scale, where the rotated
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U(1) remains manifestly unbroken, it is useful to define a new photon field strength
tensor by

Fµν := ∂µAν − ∂νAµ. (28)

This implies

W 3
µν = swFµν + cw(∂µZν − ∂νZµ) + ig2(W−µ W+

ν −W+
µ W

−
ν ),

Bµν = cwFµν − sw(∂µZν − ∂νZµ),
(29)

and the equation of motion

DµFµν = ∂µFµν = −e
∑
f

Qf f̄γνf. (30)

We also perform a chiral rotation of the χ field:

χ 7→ exp
(

i
2
γ5φ

)
χ, (31)

which will allow us to choose φ in a way to eliminate an imaginary mass term possibly
induced by effective operators. This will be discussed in greater detail in chapter 6.
Since the electrically charged components of the dark matter field decouple at the level
of our discussion, we will use χ to refer to only the uncharged component of the dark
matter field after breaking the electroweak symmetry.

4.3.1 Light dark matter

Assuming that the dark matter mass mχ is small with respect to the electroweak scale,
we can write the renormalizable part of its Lagrangian as

LDM = χ̄i/∂χ, (32)

with an additional customary factor 1/2 for the Majorana case. We find a full basis
of operators for this theory in chapter 5 and discuss our notation of the effective
Lagrangian before matching to the UV basis in chapter 6.

4.3.2 Electroweak-scale dark matter

For the case of a dark matter mass of roughly the electroweak scale, we employ the
Heavy Dark Matter Effective Theory (HDMET, [27]), which is constructed analogously
to Heavy Quark Effective Theory (see e.g. [28, 29]). The ansatz for this treatment is
the fact that for direct detection experiments, the typical momentum exchanges are
very small compared to the dark matter mass. Thus, we can introduce a four-velocity
vµ that we choose relativistically close to the dark matter velocity before or after the
scattering, and write

p = mχv + k (33)

for the dark matter momentum p, where the residual momentum k is much smaller
than mχ. This will allow us to perform an expansion in the inverse dark matter mass
1/mχ.
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Using the projection operators

P± =
1± /v

2
, (34)

we split up the dark matter field χ into a small-component field χv and a large-
component field Xv according to

χv(x) = eimχv·xP+χ(x) and Xv(x) = eimχv·xP−χ(x), (35)

so that
χ(x) = e−imχv·x (χv(x) +Xv(x)) (36)

holds. Interpreting the relations P−χv = P+Xv = 0 in the rest frame allows us to
conclude that χv and Xv are associated with the particle and anti-particle modes of
χ, respectively. This redefinition transforms the usual Dirac Lagrangian into

Lv = χ̄viv · ∂χv − X̄v(iv · ∂ + 2mχ)Xv + χ̄vi/∂⊥Xv + X̄vi/∂⊥χv, (37)

where we introduce the shorthand Xµ
⊥ = Xµ−vµv ·X for any object X with a Lorentz

index.
Since we need a momentum of order O(2mχ) to excite anti-particle modes, we inte-

grate out Xv. Deriving and exploiting the coupled equations of motion from Eq. (37)
allows us to write down an effective Lagrangian

Leff
v = χ̄viv · ∂χv + χ̄vi/∂⊥

1

2mχ + iv · ∂
i/∂⊥χv. (38)

Expanding in powers of 1/mχ, we obtain our final expression for the Lagrangian

LHDMET = χ̄viv · ∂χv +
1

2mχ
χ̄v(i∂⊥)2χv +O(1/m2

χ), (39)

where the equation of motion for χv is now given by

iv · ∂χv = − 1

2mχ
(i∂⊥)2χv +O(1/m2

χ). (40)

At tree-level and to first order in 1/mχ, this procedure is equivalent to applying
the following identity to the original Lagrangian:

χ = e−imχv·x
(
1 +

i/∂
2mχ

+O
(

1

m3
χ

))
χv. (41)

The situation for the Majorana case is largely the same: The additional Majorana
condition does not imply any relation between the remaining active degrees of freedom
in HDMET, leading to the same Lagrangian as in the Dirac case. However, to obtain
this canonically normalized Lagrangian, we have to insert an additional factor of 1/

√
2

on the right hand side of the new fields definition in Eq. (35). This modifies the
tree-level relation Eq. (41) by a factor

√
2. For more details on this, see Ref. [30].

Some useful identities for calculations in HDMET include

P±γ
µP± = ±P±vµ, P±γ

µP∓ = P±γ
µ
⊥, (42)

P±[γ
µ, γν ]P± = P±[γ

µ
⊥, γ

ν
⊥], P±[γ

µ, γν ]P∓ = 4P±v
[µγ

ν]
⊥ . (43)

We discuss the effective Lagrangian for this theory before performing the matching
to the full UV basis in chapter 6.
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4.4 Effective description at low energies

While we have yet to extend the treatment of [2] for our higher-dimensional operators,
this section sketches the remaining steps to connect the UV Wilson coefficients to the
differential DM-nucleus interaction cross section as the primary observable in direct
detection experiments.

Chiral Perturbation Theory

The starting point of chiral perturbation theory is to inspect the symmetries of the
QCD Lagrangian just above the non-perturbative regime to constrain our effective
description at lower energies. Since only three quarks remain as active degrees of
freedom, we find that, disregarding the small quark masses and effective operators
with (pseudo-)scalar and tensor quark currents, it is invariant under global chiral
rotations in flavour space:

UL(3)× UR(3) = SUL(3)× SUR(3)× UV (1)× UA(1). (44)

It turns out that non-perturbative quantum effects induce a non-zero quark conden-
sate, spontaneously breaking the approximate SUL(3)×SUR(3) down to SUV (3), the
subgroup where left- and right-handed quarks transform under the same rotation.
The eight pseudoscalar mesons can be seen as the pseudo-Nambu Goldstone bosons
resulting from breaking the approximate (SUL(3)× SUR(3))/SUV (3) ∼= SU(3).

The quark masses and effective operators, of course, explicitly break all these sym-
metries. To systematically include them in our effective theory, we perform a spurion
analysis. As far as QCD is concerned, dark matter currents can be treated as exter-
nal fields, so that we rewrite the QCD part of the Lagrangian in terms of spurions
sg, θ, vµ, aµ, s, p and tµν :

LQCD = LQCD
0 + sG(x)G

a
µνG

µν
a + θ(x)Ga

µνG̃
µν
a

+ q̄(x)γµ (vµ(x) + γ5aµ(x)) q(x)

− q̄(x) (s(x)− iγ5p(x)) q(x)
+ q̄(x)σµνtµν(x)q(x),

(45)

where LQCD
0 contains the kinetic terms of quarks and their QED interactions. We need

to add the tensor current with respect to [2], since our operators Q(2F )
9,q and Q(2F )

10,q now
contribute to it.

Spurion analysis is based on the principle that the form chiral symmetry breaking
takes should be barely dependent of the details of the physics encoded in the spurions,
since one can expand in spurion insertions if they only weakly break the symmetry.
Therefore, we can introduce an artificial local SUL(3)× SUR(3) symmetry acting as

q(x) 7→ VR(x)PR q(x) + VL(x)PL q(x) (46)

on the quarks and freely choose the transformation properties of the spurions in a way
to leave the Lagrangian invariant:

s+ ip 7→ VR(s+ ip)V †L (47)
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sG 7→ sG (48)

vµ + aµ 7→ VR(vµ + aµ)V
†
R + iVR∂µV †R (49)

vµ − aµ 7→ VL(vµ − aµ)V
†
L + iVL∂µV †L (50)

tµν 7→ 1

2
VR

(
tµν +

1

2
εµναβt

αβ

)
V †L +

1

2
VL

(
tµν −

1

2
εµναβt

αβ

)
V †R (51)

Now, we can go on to construct our effective theory, building a Lagrangian respect-
ing our artificial symmetry and using the spurions, light pseudoscalars and baryons as
degrees of freedom. Due to their high mass, the baryons get treated as heavy analo-
gously to Heavy Quark Effective Theory or HDMET. As a counting scheme, the usual
expansion in momenta and masses is employed.

The Wilson coefficients in this context are often called low-energy constants or
Gasser-Leutwyler coefficients after the original authors who derived the ChPT La-
grangian [31]. For numerical calculations, additional input is needed to fix some of
these coefficients in the form of non-perturbative observables such as the quark con-
densate and pion decay constant. These can be obtained either from experiments or
lattice computations.

Chiral counting in ChEFT

The description of forces at a nuclear scale that is outlined above breaks down for
nuclei due to the appearance of reducible infrared-divergent diagrams, i.e. those with
only nucleons in intermediate states. Weinberg solved this problem: One can recover
N -nucleon amplitudes by solving the Lippmann-Schwinger equation with an effective
potential constructed from irreducible diagrams, effectively resumming the reducible
diagrams [32, 33].

For a more thorough discussion, see [2] or [34].

Effective theory of nuclear response

In a last step, the theory of nuclear response in direct detection searches as developed
in [35] is used to derive the DM-nucleus cross section. To this end, we need to match
the description of the last section onto the Wilson coefficients of the non-relativistic
operators describing the scattering of dark matter off protons and neutrons.

For a nucleus of mass mA and spin JA, this yields

dσ
dER

=
mA

4π|vχ|2
1

2JA + 1

∑
spins

|M|2NR, (52)

where the squared non-relativistic matrix element can be found as an explicit expres-
sion of Wilson coefficients weighing nuclear response functions.
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5 Construction of the operator basis

As an extension of the dimension five and six basis for effective operators with fermionic
dark matter fields constructed in the upcoming paper by Bishara, Brod, Grinstein
and Zupan [1], we have constructed an analogous basis at dimension seven. We auto-
mated this task through custom C++ code generating all expressions invariant under
standard model symmetries to consistently exploit a range of linear relations between
operators. Our program replicates the results of the lower-dimensional operator bases
in [1], and was compared with the numbers of independent operators calculated using
Hilbert series methods with code supplied with [36].

As stated previously, we limit our analysis to operators containing an even number
of dark matter fields. The rationale behind this is not to introduce interactions that
would make our dark matter unstable. From the perspective of a UV completion,
this could typically be implemented using a U(1) or Z2 symmetry. We only find
independent operators with exactly two χ fields at dimension seven.

We give only operators without charge-conjugated dark matter fields. In the Ma-
jorana case, no additional operators exist, while in the Dirac case we obtain a copy of
our list with χ̄χ → χ̄cχ, since Yχ = 0. If we were to relax this assumption, which of
course is only possible in the Dirac case, the list with χ̄χ currents remains the same,
while the operators with charge-conjugated dark matter fields now heavily on the cho-
sen value of Yχ. For Yχ = ±1/2 and ±1, we would induce additional operators start-
ing at dimensions five and six, respectively. Any other assignment of Yχ would either
prevent an electrically neutral component of χ or not generate any new operators up
to dimension seven.

Our algorithm is independent of the chosen SU(2)-representation of χ by treat-
ing it as different from all SM representations. Thereby, we construct a superset of
bases for all possible representations. Additional reduction identities that are relevant
for specific representations of SU(2) and for Majorana particles are discussed in Sec-
tion 5.2.

The reason why no new operators with an even number of χ fields can come up
in specific representations is the following: The only new covariant symbol available
for contraction is the Levi-Civita symbol for that representation. For the fundamental
and adjoint representation, these are already considered in our operator list, and for
any higher-dimensional representation, we cannot form a singlet using only this symbol
(in an odd-dimensional representation, as argued in Section 4.1) and the even number
of indices from the dark matter fields. Operators where the SU(2) indices of χ are
contracted with other fields can always be rearranged to operators in our list using
Fierz identities.

In this chapter, we will first outline our algorithm and then go on to discuss all
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relations that were exploited to remove linearly dependent operators and the consis-
tency checks we performed. Finally, we close by discussing the resulting basis, both
above and below the electroweak scale.

5.1 Steps of the algorithm

The following steps are executed for the construction of an operator basis:

1. Construction of all possible hypercharge-conserving operator classes at the de-
sired mass dimension

2. Generation of all possible primary index contractions for every operator class

3. Addition of Levi-Civita symbols

4. Contraction of all remaining indices

5. Finding hermitian combinations and removal of superfluous operators

For our purposes, an operator class is specified by the combination of field oper-
ators and covariant derivatives that constitute the operator. For example, one such
class would be D2[χ̄]χA. The list of allowed operator classes is easily constructed by
exhausting all combinations of fields and derivatives up to a given mass dimension.

In the second step, we regard the operator classes as possible terms that can appear
in operators, whose indices have not yet been contracted. By primary indices we denote
pairs of indices for which two things hold: Firstly, we can specify a complete basis of all
covariant matrices between them, possibly with additional attached indices. Secondly,
these indices cannot be introduced when contracting other primary indices (thereby
guaranteeing this step of the computation to terminate). The typical example is the
covariant basis of matrices between Dirac-spinors, but in our case, all indices except
those of the Lorentz group and adjoint representations are primary, since these two
kinds of indices appear in matrices that contract other indices like γµ and τa. For each
class, we generate all possible contractions of primary indices using their complete
bases.

For each candidate operator constructed up to now, we add more candidates with
any combination of Levi-Civita symbols for Lorentz and adjoint SU(2) indices in the
third step. We do not consider SU(3) or fundamental SU(2) symbols, since the former
cannot appear with the maximum of two colored particles that come up in our operator
class list, and the latter is already included in the primary contractions. Furthermore,
we do not add more than one for each type of index, since (for the real representations
considered here) a product of two epsilon tensors can be reexpressed with Kronecker
deltas by utilising their representation as determinants, so that these operators are
not independent from those already constructed.

In step 4, we construct all possible contractions of the remaining open indices, with
the exception of indices not associated with an unbroken symmetry. For our situation,
this is only the case for standard model generation indices. We discard all operators
whose indices cannot be fully contracted.
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Finally, we find hermitian combinations of the complete set of terms we have gen-
erated thus far and reduce linearly dependent operators, as discussed in the following
section.

5.2 Reduction identities

After writing down all possible invariant operators, the list needs to be reduced to a
linearly independent set. The linear relations fall into three categories: Equations
of motion, relations only valid in four spacetime dimensions (usually referred to as
’evanescent’ in the literature) as well as relations valid in all spacetime dimensions. All
of these can be consistently used in dimensional regularisation to reduce the operator
basis before calculating the renormalization group running, as H. Simma discusses
in [37].

To keep track of all generated relations, we add them as rows to a matrix M , so
that, with a vector ~Q of operators, M ~Q = 0 holds. To find an independent set of
operators, we now put M into reduced row echelon form. Going through the matrix
row-by-row, we can always disregard the first operator with a non-zero coefficient. This
holds, because if it is the only coefficient in that row with a non-zero coefficient, it must
vanish, but if there are other operators in that row, we can reexpress it with those
that come after it. In order to preferentially keep operators that can be expressed in a
simple way, we order the operators and thereby the columns of the matrix before the
reduction, giving preference to self-hermitian terms, with the fewest number of Levi-
Civitas, simplest Dirac matrices and rightmost covariant derivatives, in this order.
This procedure was already used by Gripaios and Sutherland in [38].

The rest of this section will go through all identities exploited by our program.

Permutations of identical fields and index symmetries To remove all possible
duplicate operators, we explicitly check the disparity of operators under simultaneous
permutations of (anti-)symmetric indices and index sets of identical fields, keeping
track of fermionic signs. This also allows us to identify operators that vanish already
per symmetries.

Chirality of standard model fermions Since we work in four-component nota-
tion, we need to eliminate all operators that vanish via the chirality of the respective
fields and simplify expressions containing γ5 that arise in Fierz and EOM relations.
The identity

σµν iγ5 = −1

2
εµναβσαβ (53)

is especially useful in this regard.

De-facto symmetry of covariant derivatives Pairs of covariant derivatives act-
ing on the same field can be decomposed into parts that are symmetric and antisym-
metric. Since the antisymmetric part is given by the commutator [Dµ, Dν ], which is in
turn given by the Ricci identity as a sum of the gauge field strength tensors and the
appropriate generators, it is already covered by operators with a lower count of covari-
ant derivatives, which is guaranteed to be in a distinct class. Therefore, our program
treats covariant derivatives as if they were symmetric in their indices.
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Integration by parts Since total derivatives have no physical effects, expanding
them using the Leibniz rule yields additional relations between our operators. We
keep our list manifestly covariant by using covariant derivatives, which are of course
constructed to also satisfy the Leibniz rule. Algorithmically, we implement this by
constructing all operators with one open Lorentz index at mass dimension six and
subsequently contracting the open index with the total derivative of this operator.

Fierz identities Fierz identities are a general consequence of completeness relations
in a given vector space and can be used to rearrange the fields in pairs of bilinears;
for a general discussion and derivation see e.g. [39]. The general form of the well-
known Fierz identities allows us to disregard primary contractions that are not in
an (arbitrarily chosen) standard order, since any operator obtained by reordering the
pattern of contraction will be a linear combination of the previous operators. This
argument also applies to more than two bilinears, since a general permutation of fields
can be expressed as a number of transpositions, for which the usual formula holds.

While the Fierz relations can be used to move all bilinears into a standard ordering,
there are two cases where they imply additional relations: Firstly, if two fields in the
bilinears are identical, using them to swap these fields directly relates terms that are
already in standard order. Secondly, if an expression in non-standard order vanishes,
e.g. by chirality, EOM’s or IBP identities, then the equivalent expression in standard
order must vanish too, possibly yielding a new, independent relation.

The classical example of Fierz relations considers the standard covariant basis of
Dirac bilinears,

{ΓA} = {1, γ5, γµ, γ5γµ, σµν}, (54)

where ν < µ = 0...3, and its dual basis constructed with respect to the Frobenius
scalar product, so that

Tr(ΓAΓ
B) = 4δBA . (55)

It posits that

ΓA
ijΓ

B
kl =

1

16
Tr(ΓAΓCΓ

BΓD) Γ
D
il Γ

C
kj . (56)

We generated all explicit Fierz identities from this formula using FORM, since
usually only those that relate Lorentz singlets are given in the literature. We then
implemented C++ code to treat only those cases that could be used to reduce our list
of operators, but it turned out that all additional relations generated this way were
already implied by Eq. (53), which can be used to move iγ5 into the SM current and
subsequently exploit the fields chirality.

For the fundamental representation of SU(2), the following explicit Fierz identities
were used:
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(1)ij(1)kl = 2(τa)il(τ
a)kj +

1

2
(1)il(1)kj

(τa)ij(1)kl = iεabc(τ c)il(τ b)kj +
1

2
(τa)il(1)kj +

1

2
(1)il(τ

a)kj

(τa)ij(τ
b)kl = δab

(
1

4
(1)il(1)kj − (τ c)il(τ

c)kj

)
+

1

2

(
(τa)il(τ

b)kj + (τ b)il(τ
a)kj

)
+

i
4
εabc

(
(τ c)il(1)kj − (1)il(τ

c)kj

)
,

(57)

where the latter two equations can easily be derived from the well-known first relation
by using

τaτ b =
i
2
εabcτ c +

1

4
δab. (58)

If we assume the general case that χ is in a different representation of SU(2) than all
SM fields and since, judging from the possible operator classes enumerated in Sec. 5.4
and 5.5, there cannot be more than one SU(3) bilinear, these are all the Fierz relations
we can make use of.

Products of Levi-Civita symbols As previously stated, we already exploited the
fact that we can reduce products of Levi-Civita symbols to sums of Kronecker deltas
by not considering such operators in the first place, our treatment of Fierz relations
and EOMs reintroduce such products. For Lorentz indices, for example, we then use
the general formula

εµναβε
λρστ = −

∣∣∣∣∣∣∣∣∣∣
δλµ δλν δλα δλβ
δρµ δρν δρα δρβ
δσµ δσν δσα δσβ
δτµ δτν δτα δτβ

∣∣∣∣∣∣∣∣∣∣
(59)

to express these relations through the operators on our list, where the vertical bars
denote the usual matrix determinant. This also implies the well-known formulae

εµναβε
λραβ = −4δλ[µδ

ρ
ν], εµναβε

λναβ = −6δλµ, εµναβε
µναβ = −24, (60)

where square brackets denote antisymmetrization.

Schouten identities Another useful identity to find relations between operators
containing Levi-Civita symbols are Schouten identities. These follow from the fact
that there is no totally antisymmetric tensor with more indices than the vector space
dimension other than the zero tensor. E.g., antisymmetrizing an object with more
than four Lorentz indices yields zero. In the literature, this is usually expressed by
noting that for any 4-vector Vµ,

Vµεαβγδ − Vαεµβγδ − Vβεαµγδ − Vγεαβµδ − Vδεαβγµ = 0 (61)

holds.
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These identities were applied semi-manually to eliminate six operators in the
Gauge-Gauge operator class. For example, antisymmetrizing the indices of the Levi-
Civita symbol together with µ in

(χ̄σµνχ)B
µ
σBαβε

νσαβ . (62)

and dropping terms that vanish by symmetry implies that the whole operator vanishes.
Moreover, Schouten identities can also yield relations like

χ̄σµντ
aχ W b ν

σ W c
αβ ε

abcεµσαβ = χ̄σµντ
aχ W b α

σ W c
αβ ε

abcεµσνβ , (63)

which follows from antisymmetrizing the Levi-Civita symbol with ν on the left-hand
side. Since the naïve algorithm antisymmetrizing all sufficiently large sets of indices
is very computationally demanding, index sets for a small number of operators were
specified by hand.

Bianchi identity The Jacobi identity of the Lie-bracket together with the Ricci
identity implies the Bianchi identity, which for any gauge field strength tensor Ga

µν is
given by

DµG
a
νρ +DνG

a
ρµ +DρG

a
µν = 0. (64)

In particular, this implies that the covariant derivative of the dual tensor vanishes:

DµG̃a
µν = 0, where G̃a

µν :=
1

2
εµνρηG

ρη
a . (65)

We implement this together with our treatment of equations of motion for gauge
tensors due to their similar form.

Additional reduction for special representations of SU(2) While this opera-
tor basis is valid for any irreducible representation of SU(2) that the dark matter field
χ assumes, additional relations can make some operators superfluous in specific rep-
resentations.

For the trivial representation of SU(2), it suffices to drop all operators with a SU(2)
generator in the dark matter current. For the fundamental representation, we find no
additional relations that lead to redundant operators. For the adjoint representation,
the generator is given by the structure constant, which is just the Levi-Civita symbol.
Therefore, operators with both a generator and an additional Levi-Civita symbol can
be simplified as discussed above.

Additional reduction for the Majorana case For every dark matter Dirac bi-
linear, we can use the Majorana condition to replace χ with its charge conjugate.
Simplifying the resulting operator yields the negative of the original operator for the
Dirac matrices γµ and σµν in the bilinear, so that such operators must vanish. In
other words, every dark matter bilinear that by itself is odd under charge symmetry
can be dropped from the list in the Majorana case, eliminating DM vector and tensor
currents.

Note that an antisymmetric covariant derivative would affect this argument if it
acts within the bilinear. However, we chose our basis in such a way that all derivatives
act within the standard model part of each operator.
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For the Majorana case, we implicitly include a customary factor 1/2 for every dark
matter bilinear in the basis, in order to simplify a simultaneous treatment of both
types of fermions.

5.2.1 Equations of motion

For scalar fields and field strength tensors, the reduction with equations of motion is
fairly straightforward. For Dirac fields, however, the Clifford algebra complicates mat-
ters. To deal with this, we first construct a new set of only EOM-vanishing operators
by finding all operators of the appropriate mass dimension with any of the following
matrix expressions in Dirac field bilinears:

{γµ, γµγ5, γµγν , γµγνγ5, γµγνγρ, γµγνγργ5}, (66)

where either the rightmost or leftmost Lorentz index is contracted with a covariant
derivative acting on the right or left Dirac field, respectively. The remaining open
indices as well as the remaining fields are contracted with the same algorithm used for
the main operator list to get all covariant expressions containing this EOM-vanishing
bilinear. We then proceed to translate each of these into relations between our full list
by exploiting the identities

γµγν = ηµν − iσµν , (67)
γµγνγ5 = ηµνγ5 − iσµνγ5, (68)
γµγνγρ = ηµνγρ + ηνργµ − ηµργν − iεσµνργσγ5, (69)

γµγνγργ5 = ηµνγργ5 + ηνργµγ5 − ηµργνγ5 − iεσµνργσ, (70)

where the chirality of standard model fields is used to absorb γ5, if possible. If there
already exists a Lorentz Levi-Civita symbol in the remainder of the operator, their
product gets simplifies as described above.

We argue that this procedure (only together with the previously discussed treat-
ment of partial integration and index symmetries, of course) captures all relations
implied by equations of motion. To see this, consider a completely general EOM-
vanishing operator

X̄MγµDµX..., (71)

where X is any Dirac field, M is any sum of products of Dirac matrices, possibly con-
tracted with other expressions in the remainder of the operator, which is denoted by
dots. The case where the covariant derivative acts on the left or additional derivatives
appear can be treated analogously in the following argument. This operator, when
expressed in our basis, does not induce any relations not covered by the above pro-
cedure, since Eq. (69) and (70) can be repeatedly applied within each term of M to
reduce it to a sum of terms with a maximum of two gamma matrices (and possibly
one γ5, which can always be anticommuted to the rightmost position and eliminated
if an even number of them exists), so that we have expressed this operator as a lin-
ear combination of the vanishing operators already constructed by our program. The
relation it implies, therefore, is also linearly dependent.
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5.2.2 Construction of hermitian combinations

Since the discussed relations contain complex coefficients and mostly relate single
terms, we find it most convenient to implement a complex matrix representing these
relations before finding hermitian combinations. In step 5, however, we convert this
to a real matrix by first doubling our number of terms, multiplying half of them with
i, and then appropriately building purely real relations from each original relation as
well as its complex conjugate. We then find pairs of expressions related by hermitian
conjugation (keeping track of permutation and fermionic signs) and construct an in-
vertible matrix H, which relates a vector ~Q of the original operators to a new vector
~Q′ = H ~Q, consisting of sums and differences of terms connected by conjugation and
keeping terms that are already (anti-)hermitian intact. The new matrix that we need
to put into row echelon form, as discussed in the introduction to this section, is then
given by M ′ = MH−1. After removing redundant operators we also drop all antiher-
mitian combinations as unphysical.

5.3 Consistency checks

Optimally, we would have liked to reproduce the well-investigated standard model
operators basis at dimension six, first discussed by Buchmüller and Wyler in [40] and
revisited by Grzadkowski et al. in [41]. However, since we have mostly exploited Fierz
relations either by hand or in a way that is restricted to our basis, we deemed this
impracticable. But, as stated previously, we are able to reproduce the basis for our
effective dark matter setup at dimensions five and six without any manual intervention.

Additionally, we compared our basis with operator counts for a given field content
that were derived using the conformal Hilbert series method [36, 42, 43]. This recent
approach allows for a systematic group-theoretic treatment of equations of motion and
integration by parts identities. It calculates an object called the Hilbert series, which
is given by

H(D, φ1, . . . , φN ) =
∑

k,r1,...,rN

ck,r1,...,rN φr11 . . . φrNN Dk, (72)

where φi and D are complex numbers that stand in for the fields of the theory and the
covariant derivative. The coefficients ck,r1,...,rN are the sought-after operator counts.

Michele Tammaro of the University of Cincinnati adapted the Mathematica code
supplied with [36] to our scenario, which we found to be entirely consistent with our
list.

5.4 The full UV basis

At dimension seven, we find the following types of operator classes that conserve
hypercharge:

• Q(GG) ∝ χ̄χ G G - Gauge-Gauge

• Q(GH) ∝ χ̄χ G H†H - Gauge-Higgs

• Q(Y ) ∝ χ̄χ Q̄UH - Yukawa-like
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• Q(4H) ∝ χ̄χ H†H H†H - Four-Higgs

• Q(d2F ) ∝ D χ̄χ Ψ̄Ψ - Four-Fermion

• Q(2d2H) ∝ DD χ̄χ H†H - Two-Higgs

• Q(2dG) ∝ DD χ̄χ G - Dipole-like (all vanish)

• Q(4d) ∝ DDDD χ̄χ - Four-Derivative (all vanish)

The number of independent, hermitian operators (with real-valued coefficients)
for every special case are listed in Table II, where we used the additional reductions
described in Section 5.2.

We now list all operators for every given class, using the shorthand
↔
Dµ:=

←
Dµ −Dµ,

and the convention that derivatives act until the end of a bracket or on the closest
bracket. As a reminder, we define G̃a

µν := 1
2εµνρηG

ρη
a for field strength tensors, and for

the Majorana case add a factor 1/2 for every dark matter bilinear.

Gauge-Gauge operators

Q
(GG)
1 = (χ̄χ)BµνBµν Q

(GG)
2 = (χ̄iγ5χ)BµνBµν (73)

Q
(GG)
3 = (χ̄χ)BµνB̃µν Q

(GG)
4 = (χ̄iγ5χ)BµνB̃µν (74)

Q
(GG)
5 = (χ̄τaχ)W a

µνBµν Q
(GG)
6 = (χ̄iγ5τaχ)W a

µνBµν (75)

Q
(GG)
7 = (χ̄τaχ)W a

µνB̃µν Q
(GG)
8 = (χ̄iγ5τaχ)W a

µνB̃µν (76)

Q
(GG)
9 = (χ̄σµντ

aχ)W a
µσBνσ Q

(GG)
10 = (χ̄σµν iγ5τaχ)W a

µσBνσ (77)

Q
(GG)
11 = (χ̄χ)Ga

µνG
a
µν Q

(GG)
12 = (χ̄iγ5χ)Ga

µνG
a
µν (78)

Q
(GG)
13 = (χ̄χ)Ga

µνG̃
a
µν Q

(GG)
14 = (χ̄iγ5χ)Ga

µνG̃
a
µν (79)

Q
(GG)
15 = (χ̄χ)W a

µνW
a
µν Q

(GG)
16 = (χ̄iγ5χ)W a

µνW
a
µν (80)

Q
(GG)
17 = (χ̄χ)W a

µνW̃
a
µν Q

(GG)
18 = (χ̄iγ5χ)W a

µνW̃
a
µν (81)

Q
(GG)
19 = (χ̄σµντ

aχ)W b
µσW

c
νσε

abc Q
(GG)
20 = (χ̄σµν iγ5τaχ)W b

µσW
c
νσε

abc (82)

Dirac DM Majorana DM
Trivial Fun. Adj. Trivial Fun. Adj.

CP-even 25 46 44 15 24 24
Total 50 92 88 30 48 48

TABLE II. Number of independent operators for every special case discussed in Section 5.2. Note
that the basis for the fundamental representation is a superset for general representations and that
additionally allowing operators with charge-conjugated dark matter doubles the operator count in the
Dirac case.
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Gauge-Higgs operators

Q
(GH)
1 = (χ̄σµνχ)Bµν H

†H Q
(GH)
2 = (χ̄σµν iγ5χ)Bµν H

†H (83)

Q
(GH)
3 = (χ̄σµντaχ)Bµν H

†τaH Q
(GH)
4 = (χ̄σµν iγ5τaχ)Bµν H

†τaH (84)

Q
(GH)
5 = (χ̄σµνχ)W a

µν H
†τaH Q

(GH)
6 = (χ̄σµν iγ5χ)W a

µν H
†τaH (85)

Q
(GH)
7 = (χ̄σµντaχ)W a

µν H
†H Q

(GH)
8 = (χ̄σµν iγ5τaχ)W a

µν H
†H (86)

Q
(GH)
9 = (χ̄σµντaχ)Ab

µν H
†τ cHεabc Q

(GH)
10 = (χ̄σµν iγ5τaχ)Ab

µν H
†τ cHεabc (87)

Yukawa-like operators

Q
(Y )
1 = (χ̄χ)(L̄EH + h.c.) Q

(Y )
2 = (χ̄iγ5χ)(L̄EH + h.c.) (88)

Q
(Y )
3 = (χ̄χ)(iL̄EH + h.c.) Q

(Y )
4 = (χ̄iγ5χ)(iL̄EH + h.c.) (89)

Q
(Y )
5 = (χ̄τaχ)(L̄EτaH + h.c.) Q

(Y )
6 = (χ̄iγ5τaχ)(L̄EτaH + h.c.) (90)

Q
(Y )
7 = (χ̄τaχ)(iL̄EτaH + h.c.) Q

(Y )
8 = (χ̄iγ5τaχ)(iL̄EτaH + h.c.) (91)

Q
(Y )
9 = (χ̄σµνχ)(L̄σ

µνEH + h.c.) Q
(Y )
10 = (χ̄σµνχ)(iL̄σµνEH + h.c.) (92)

Q
(Y )
11 = (χ̄σµντ

aχ)(L̄σµνEτaH + h.c.) Q
(Y )
12 = (χ̄σµντ

aχ)(iL̄σµνEτaH + h.c.)
(93)

Q
(Y )
13 = (χ̄χ)(Q̄DH + h.c.) Q

(Y )
14 = (χ̄iγ5χ)(Q̄DH + h.c.) (94)

Q
(Y )
15 = (χ̄χ)(iQ̄DH + h.c.) Q

(Y )
16 = (χ̄iγ5χ)(iQ̄DH + h.c.) (95)

Q
(Y )
17 = (χ̄τaχ)(Q̄DτaH + h.c.) Q

(Y )
18 = (χ̄iγ5τaχ)(Q̄DτaH + h.c.) (96)

Q
(Y )
19 = (χ̄τaχ)(iQ̄DτaH + h.c.) Q

(Y )
20 = (χ̄iγ5τaχ)(iQ̄DτaH + h.c.) (97)

Q
(Y )
21 = (χ̄σµνχ)(Q̄σ

µνDH + h.c.) Q
(Y )
22 = (χ̄σµνχ)(iQ̄σµνDH + h.c.) (98)

Q
(Y )
23 = (χ̄σµντ

aχ)(Q̄σµνDτaH + h.c.) Q
(Y )
24 = (χ̄σµντ

aχ)(iQ̄σµνDτaH + h.c.)
(99)

Q
(Y )
25 = (χ̄χ)(Q̄UεH + h.c.) Q

(Y )
26 = (χ̄iγ5χ)(Q̄UεH + h.c.) (100)

Q
(Y )
27 = (χ̄χ)(iQ̄UεH + h.c.) Q

(Y )
28 = (χ̄iγ5χ)(iQ̄UεH + h.c.) (101)

Q
(Y )
29 = (χ̄τaχ)(Q̄UτaεH + h.c.) Q

(Y )
30 = (χ̄iγ5τaχ)(Q̄UτaεH + h.c.) (102)

Q
(Y )
31 = (χ̄τaχ)(iQ̄UτaεH + h.c.) Q

(Y )
32 = (χ̄iγ5τaχ)(iQ̄UτaεH + h.c.) (103)

Q
(Y )
33 = (χ̄σµνχ)(Q̄σ

µνUεH + h.c.) Q
(Y )
34 = (χ̄σµνχ)(iQ̄σµνUεH + h.c.) (104)

Q
(Y )
35 = (χ̄σµντ

aχ)(Q̄σµνUτaεH + h.c.) Q
(Y )
36 = (χ̄σµντ

aχ)(iQ̄σµνUτaεH + h.c.)
(105)

Four-Higgs operators

Q
(4H)
1 = (χ̄χ) H†H H†H Q

(4H)
2 = (χ̄iγ5χ) H†H H†H (106)

Q
(4H)
3 = (χ̄τaχ) H†τaH H†H Q

(4H)
4 = (χ̄iγ5τaχ) H†τaH H†H (107)

36



Four-Fermion operators

Q
(d2F )
1 = (χ̄σµνχ)∂µ(ĒγνE) Q

(d2F )
2 = (χ̄σµν iγ5χ)∂µ(ĒγνE) (108)

Q
(d2F )
3 = (χ̄σµνχ)∂µ(D̄γνD) Q

(d2F )
4 = (χ̄σµν iγ5χ)∂µ(D̄γνD) (109)

Q
(d2F )
5 = (χ̄σµνχ)∂µ(ŪγνU) Q

(d2F )
6 = (χ̄σµν iγ5χ)∂µ(ŪγνU) (110)

Q
(d2F )
7 = (χ̄σµνχ)∂µ(L̄γνL) Q

(d2F )
8 = (χ̄σµν iγ5χ)∂µ(L̄γνL) (111)

Q
(d2F )
9 = (χ̄σµντaχ)∂µ(L̄τ

aγνL) Q
(d2F )
10 = (χ̄σµν iγ5τaχ)∂µ(L̄τaγνL) (112)

Q
(d2F )
11 = (χ̄σµνχ)∂µ(Q̄γνQ) Q

(d2F )
12 = (χ̄σµν iγ5χ)∂µ(Q̄γνQ) (113)

Q
(d2F )
13 = (χ̄σµντaχ)∂µ(Q̄τ

aγνQ) Q
(d2F )
14 = (χ̄σµν iγ5τaχ)∂µ(Q̄τaγνQ) (114)

Two-Higgs operators

Q
(2d2H)
1 = (χ̄χ)DµH

†DµH Q
(2d2H)
2 = (χ̄iγ5χ)DµH

†DµH (115)

Q
(2d2H)
3 = (χ̄τaχ)DµH

†τaDµH Q
(2d2H)
4 = (χ̄iγ5τaχ)DµH

†τaDµH (116)

Q
(2d2H)
5 = i(χ̄σµνχ)DµH

†DνH Q
(2d2H)
6 = i(χ̄σµν iγ5χ)DµH

†DνH (117)

Q
(2d2H)
7 = i(χ̄σµντaχ)DµH

†τaDνH Q
(2d2H)
8 = i(χ̄σµν iγ5τaχ)DµH

†τaDνH (118)

5.5 The full basis below the electroweak scale

Below the electroweak scale, the different field content and broken symmetry lead to
a new full basis of effective operators. The Higgs boson, massive gauge bosons and
top quark are integrated out. Note that operators below the electroweak scale and
their Wilson coefficients are always denoted with calligraphic letters. In the rest of
this section, the field f can be chosen from {u, d, c, s, b, e, µ, τ, νe, νµ, ντ}. However, for
neutrino currents we keep only those operators where the Dirac indices are contracted
via a single γµ due to their chirality. The possible hypercharge-conserving operator
classes up to mass dimension seven are given by

• Q(G) ∝ χ̄χ G - Gauge (Dim 5)

• Q(2F ) ∝ χ̄χ f̄f - Four-Fermion (Dim 6)

• Q(d2F ) ∝ D χ̄χ f̄f - Four-Fermion (Dim 7)

• Q(GG) ∝ χ̄χ GG - Gauge-Gauge (Dim 7)

For the Majorana case, we again include an additional factor 1/2 for every dark matter
bilinear.

Gauge operators (Dim 5)

Q(G)
1 = (χ̄σµνχ)Fµν Q(G)

2 = (χ̄σµν iγ5χ)Fµν (119)
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Four-Fermion operators (Dim 6)

Q(2F )
1,f = (χ̄χ) (f̄f) Q(2F )

2,f = (χ̄iγ5χ) (f̄f) (120)

Q(2F )
3,f = (χ̄χ) (f̄ iγ5f) Q(2F )

4,f = (χ̄iγ5χ) (f̄ iγ5f) (121)

Q(2F )
5,f = (χ̄γµχ) (f̄γµf) Q(2F )

6,f = (χ̄γµγ5χ) (f̄γµf) (122)

Q(2F )
7,f = (χ̄γµχ) (f̄γµγ5f) Q(2F )

8,f = (χ̄γµγ5χ) (f̄γµγ5f) (123)

Q(2F )
9,f = (χ̄σµνχ) (f̄σµνf) Q(2F )

10,f = (χ̄σµν iγ5χ) (f̄σµνf) (124)

Four-Fermion operators (Dim 7)

Q(d2F )
1,f = (χ̄γµχ) (f̄

↔
iDµ f) Q(d2F )

2,f = (χ̄γµχ) (f̄ iγ5
↔
iDµ f) (125)

Q(d2F )
3,f = (χ̄γµγ5χ) (f̄

↔
iDµ f) Q(d2F )

4,f = (χ̄γµγ5χ) (f̄ iγ5
↔
iDµ f) (126)

Q(d2F )
5,f = (χ̄σµνχ) ∂µ(f̄γνf) Q(d2F )

6,f = (χ̄σµν iγ5χ) ∂µ(f̄γνf) (127)

Q(d2F )
7,f = (χ̄σµνχ) ∂µ(f̄γνγ5f) Q(d2F )

8,f = (χ̄σµν iγ5χ) ∂µ(f̄γνγ5f) (128)

Gauge-Gauge operators (Dim 7)

Q(GG)
1 = (χ̄χ)FµνFµν Q(GG)

2 = (χ̄iγ5χ)FµνFµν (129)

Q(GG)
3 = (χ̄χ)FµνF̃µν Q(GG)

4 = (χ̄iγ5χ)FµνF̃µν (130)

Q(GG)
5 = (χ̄χ)GaµνGa

µν Q(GG)
6 = (χ̄iγ5χ)GaµνGa

µν (131)

Q(GG)
7 = (χ̄χ)GaµνG̃a

µν Q(GG)
8 = (χ̄iγ5χ)GaµνG̃a

µν (132)

38



6 Matching to the broken SM

In this chapter, we discuss the matching of the full UV basis to a basis below the
electroweak scale. We perform the matching at tree-level, additionally cutting off all
operators with a mass dimension higher than seven. While our DM model suggests
a vanishing hypercharge, we perform the calculation for a general Yχ 6= 0 as a refer-
ence. While we will only include the top Yukawa coupling for the RG running of the
full operator basis, we keep all Yukawa couplings here due to their phenomenological
relevance in the low energy limit, as it is also done in [1].

The first section describes a chiral rotation of the dark matter field, which is nec-
essary for a canonical mass term, as well as the effects of such a redefinition on the
UV Wilson coefficients. In the remaining two sections of this chapter, we provide the
matching relations of UV operators onto a basis below the electroweak scale, for the
cases of both light and electroweak-scale dark matter, respectively.

6.1 Chiral rotation of the darkmatter field

As previously stated, we perform a chiral rotation of the χ field after breaking the
electroweak symmetry, analogously to the treatment in [1] and discussed in more detail
in [44]. We implement a field redefinition

χ′ = exp
(

i
2
γ5φ

)
χ = cos

(
φ

2

)
χ+ sin

(
φ

2

)
iγ5χ (133)

This is necessary, since the effective UV operators with four Higgs fields can induce an
imaginary mass term χ̄iγ5χ after electroweak symmetry breaking. This term vanishes
after the redefinition by choosing φ according to

tanφ =
C

(H4)
2 + 1

2YχC
(H4)
4

C
(H4)
1 + 1

2YχC
(H4)
3 − 4Λ3

v4EW
mχ

, (134)

where C are the Wilson coefficients of the appropriate UV operators. We choose the
solution φ that gives rise to a positive mass, which takes the form

m′χ = mχ cosφ−
v4EW

4Λ3

(
C

(H4)
1 cosφ+

1

2
YχC

(H4)
3 cosφ+ C

(H4)
2 sinφ+

1

2
YχC

(H4)
4 sinφ

)
.

(135)
The chiral rotation leads to a mixing of Wilson coefficients when switching to the

operator basis where χ is replaced with χ′. Their mixing follows from the following
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relations:

αχ̄χ+ βχ̄iγ5χ = (α cosφ+ β sinφ) χ̄′χ′ + (β cosφ− α sinφ) χ̄′iγ5χ′

αχ̄σµνχ+ βχ̄σµν iγ5χ = (α cosφ+ β sinφ) χ̄′σµνχ′ + (β cosφ− α sinφ) χ̄′σµν iγ5χ′

(136)

where α and β stand for Wilson coefficients. (Axial-)Vector currents are unaffected.
Our basis above the electroweak scale is arranged in such a way that this translates to(

C
(X)
i

′

C
(X)
i+1

′

)
=

(
cosφ sinφ
− sinφ cosφ

)(
C

(X)
i

C
(X)
i+1

)
(137)

=

(
1 −x(C(H4)

2 + 1
2YχC

(H4)
4 )

x(C
(H4)
2 + 1

2YχC
(H4)
4 ) 1

)(
C

(X)
i

C
(X)
i+1

)
, (138)

where X is any operator category and i any odd integer. The second equality, which
we supply for consistent power-counting for the case of electroweak-scale dark matter,
follows by expanding in x =

v4EW
4Λ3mχ

, where no ambiguity in sign arises since Eq. (135)
implies that the positive-mass solution of φ is close to zero in this scenario.

Note that in the case of some Yukawa-like operators, the mixing takes place between
operators that do not contain any iγ5, which follows by using Eq. (53) to shift the iγ5
to the SM current and exploiting the SM field’s chirality.

In the following treatment, we assume that the χ redefinition was already performed
and drop all primes on χ, mχ and Wilson coefficients.

6.2 Light DM

Using our basis, we write down the effective Lagrangian for the light dark matter case
as

Leff =
∑
X,a

Ĉ(X)
a Q(X)

a , (139)

where X is any operator class. We follow [1] in our notation, so that we factor out the
electroweak scale and dark matter masses by defining

Ĉ(X)
a =

∑
n,m

C(X){n,m}
a

Λd−n−m−4vnEWm
m
χ

(140)

for the Wilson coefficients below the electroweak scale, where d is the mass dimension
of the operator Q(X)

a .
The only contribution resulting from gauge interactions is given by Z boson ex-

change, yielding

C(2F ){2,0}
5,ui

=
3− 8s2w

3
Yχ, (141)

C(2F ){2,0}
7,ui

= −Yχ, (142)
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C(2F ){2,0}
5,di

= −3− 4s2w
3

Yχ, (143)

C(2F ){2,0}
7,di

= +Yχ, (144)

C(2F ){2,0}
5,ei

= −(1− 4s2w)Yχ, (145)

C(2F ){2,0}
7,ei

= +Yχ. (146)

The contributions from Gauge-Gauge UV operators to those below the elec-
troweak scale result from performing the substitution (29). The coefficients for oper-
ators with a photon field strength tensor are given by

C(GG){0,0}
1 = c2wC

(GG)
1 − YχswcwC

(GG)
5 + s2wC

(GG)
15 , (147)

C(GG){0,0}
2 = c2wC

(GG)
2 − YχswcwC

(GG)
6 + s2wC

(GG)
16 , (148)

C(GG){0,0}
3 = c2wC

(GG)
3 − YχswcwC

(GG)
7 + s2wC

(GG)
17 , (149)

C(GG){0,0}
4 = c2wC

(GG)
4 − YχswcwC

(GG)
8 + s2wC

(GG)
18 . (150)

The operators with gluon tensors match exactly:

C(GG){0,0}
5 = C

(GG)
11 , (151)

C(GG){0,0}
6 = C

(GG)
12 , (152)

C(GG){0,0}
7 = C

(GG)
13 , (153)

C(GG){0,0}
8 = C

(GG)
14 . (154)

At tree level, there are no contributions from C
(GG)
9 , C

(GG)
10 , C

(GG)
19 and C

(GG)
20 .

The Gauge-Higgs operators contribute to the dimension-five dipole operators by
replacing the Higgs with its vacuum expectation value. The Wilson coefficients are
given by

C(G){−2,0}
1 =

cw
2
C

(GH)
1 +

Yχcw
4

C
(GH)
3 − sw

4
C

(GH)
5 − Yχsw

2
C

(GH)
7 , (155)

C(G){−2,0}
2 =

cw
2
C

(GH)
2 +

Yχcw
4

C
(GH)
4 − sw

4
C

(GH)
6 − Yχsw

2
C

(GH)
8 . (156)

At tree level, there are no contributions from C
(GH)
9 and C

(GH)
10 .

The Yukawa-like operators match onto dimension-six Four-Fermion operators by
replacing the Higgs with its vacuum expectation value. Additionally, the Four-Higgs
operators contribute to the χ mass, as discussed in section 6.1, and also the dimension-
six Four-Fermion operators after integrating out one Higgs and replacing the others
with its vacuum expectation value. For up-type quarks (u1 = u, u2 = c) this yields
the coefficients

C(2F ){−1,0}
1,ui

=
1√
2
C

(Y )
25,i +

Yχ

2
√
2
C

(Y )
29,i −

yui√
2λ

(
C

(4H)
1 +

Yχ
2
C

(4H)
3

)
, (157)

C(2F ){−1,0}
2,ui

=
1√
2
C

(Y )
26,i +

Yχ

2
√
2
C

(Y )
30,i −

yui√
2λ

(
C

(4H)
2 +

Yχ
2
C

(4H)
4

)
, (158)
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C(2F ){−1,0}
3,ui

=
1√
2
C

(Y )
27,i +

Yχ

2
√
2
C

(Y )
31,i , (159)

C(2F ){−1,0}
4,ui

=
1√
2
C

(Y )
28,i +

Yχ

2
√
2
C

(Y )
32,i , (160)

C(2F ){−1,0}
9,ui

=
1√
2
C

(Y )
33,i +

Yχ

2
√
2
C

(Y )
35,i , (161)

C(2F ){−1,0}
10,ui

=
1√
2
C

(Y )
34,i +

Yχ

2
√
2
C

(Y )
36,i . (162)

for down-type quarks (d1 = d, d2 = s, d3 = b)

C(2F ){−1,0}
1,di

=
1√
2
C

(Y )
13,i +

Yχ

2
√
2
C

(Y )
17,i −

ydi√
2λ

(
C

(4H)
1 +

Yχ
2
C

(4H)
3

)
, (163)

C(2F ){−1,0}
2,di

=
1√
2
C

(Y )
14,i +

Yχ

2
√
2
C

(Y )
18,i −

ydi√
2λ

(
C

(4H)
2 +

Yχ
2
C

(4H)
4

)
, (164)

C(2F ){−1,0}
3,di

=
1√
2
C

(Y )
15,i +

Yχ

2
√
2
C

(Y )
19,i , (165)

C(2F ){−1,0}
4,di

=
1√
2
C

(Y )
16,i +

Yχ

2
√
2
C

(Y )
20,i , (166)

C(2F ){−1,0}
9,di

=
1√
2
C

(Y )
21,i +

Yχ

2
√
2
C

(Y )
23,i , (167)

C(2F ){−1,0}
10,di

=
1√
2
C

(Y )
22,i +

Yχ

2
√
2
C

(Y )
24,i , (168)

and for charged leptons (e1 = e, e2 = µ, e3 = τ)

C(2F ){−1,0}
1,ei

=
1√
2
C

(Y )
1,i +

Yχ

2
√
2
C

(Y )
5,i − yei√

2λ

(
C

(4H)
1 +

Yχ
2
C

(4H)
3

)
, (169)

C(2F ){−1,0}
2,ei

=
1√
2
C

(Y )
2,i +

Yχ

2
√
2
C

(Y )
6,i − yei√

2λ

(
C

(4H)
2 +

Yχ
2
C

(4H)
4

)
, (170)

C(2F ){−1,0}
3,ei

=
1√
2
C

(Y )
3,i +

Yχ

2
√
2
C

(Y )
7,i , (171)

C(2F ){−1,0}
4,ei

=
1√
2
C

(Y )
4,i +

Yχ

2
√
2
C

(Y )
8,i , (172)

C(2F ){−1,0}
9,ei

=
1√
2
C

(Y )
9,i +

Yχ

2
√
2
C

(Y )
11,i , (173)

C(2F ){−1,0}
10,ei

=
1√
2
C

(Y )
10,i +

Yχ

2
√
2
C

(Y )
12,i . (174)

The Four-Fermion UV operators directly match onto the dimension-seven Four-
Fermion operators after symmetry breaking. For up-type quarks the coefficients below
the electroweak scale are given by

C(d2F ){0,0}
5,ui

=
1

2
C

(d2F )
5,i +

1

2
C

(d2F )
11,i − Yχ

4
C

(d2F )
13,i , (175)

C(d2F ){0,0}
6,ui

=
1

2
C

(d2F )
6,i +

1

2
C

(d2F )
12,i − Yχ

4
C

(d2F )
14,i , (176)
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C(d2F ){0,0}
7,ui

=
1

2
C

(d2F )
5,i − 1

2
C

(d2F )
11,i +

Yχ
4
C

(d2F )
13,i , (177)

C(d2F ){0,0}
8,ui

=
1

2
C

(d2F )
6,i − 1

2
C

(d2F )
12,i +

Yχ
4
C

(d2F )
14,i , (178)

for down-type quarks

C(d2F ){0,0}
5,di

=
1

2
C

(d2F )
3,i +

1

2
C

(d2F )
11,i +

Yχ
4
C

(d2F )
13,i , (179)

C(d2F ){0,0}
6,di

=
1

2
C

(d2F )
4,i +

1

2
C

(d2F )
12,i +

Yχ
4
C

(d2F )
14,i , (180)

C(d2F ){0,0}
7,di

=
1

2
C

(d2F )
3,i − 1

2
C

(d2F )
11,i − Yχ

4
C

(d2F )
13,i , (181)

C(d2F ){0,0}
8,di

=
1

2
C

(d2F )
4,i − 1

2
C

(d2F )
12,i − Yχ

4
C

(d2F )
14,i , (182)

for charged leptons

C(d2F ){0,0}
5,ei

=
1

2
C

(d2F )
1,i +

1

2
C

(d2F )
7,i +

Yχ
4
C

(d2F )
9,i , (183)

C(d2F ){0,0}
6,ei

=
1

2
C

(d2F )
2,i +

1

2
C

(d2F )
8,i +

Yχ
4
C

(d2F )
10,i , (184)

C(d2F ){0,0}
7,ei

=
1

2
C

(d2F )
1,i − 1

2
C

(d2F )
7,i − Yχ

4
C

(d2F )
9,i , (185)

C(d2F ){0,0}
8,ei

=
1

2
C

(d2F )
2,i − 1

2
C

(d2F )
8,i − Yχ

4
C

(d2F )
10,i , (186)

and for neutrinos (ν1 = νe, ν2 = νµ, ν3 = ντ )

C(d2F ){0,0}
5,νi

= C
(d2F )
7,i − Yχ

2
C

(d2F )
9,i , (187)

C(d2F ){0,0}
6,νi

= C
(d2F )
8,i − Yχ

2
C

(d2F )
10,i . (188)

The Two-Higgs operators in the UV do not contribute at tree level.

6.3 Electroweak scale DM

Since we did not consider loop contributions in the last section, the results would also
hold when not neglecting mχ. Therefore, we match the UV basis to the HDMET by
starting out with the coefficients of the last section and subsequently integrating out
the small-component field of χ, as discussed in chapter 4. Equation (41) implies the
following useful replacement formulae that we employ for tree-level matching for the
Dirac case:

χ̄χ→ χ̄vχv +O(1/m2
χ), (189)

χ̄iγ5χ→ 1

mχ
∂µ(χ̄vS

µχv) +O(1/m2
χ), (190)

χ̄γµχ→ χ̄vv
µχv −

1

2mχ
χ̄v

↔
i∂µ χv +

1

mχ
∂ν(χ̄vSρvηχv)ε

µνρη +O(1/m2
χ), (191)
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χ̄γµγ5χ→ 2χ̄vS
µχv +

1

mχ
χ̄v(S·

↔
i∂)vµχv +O(1/m2

χ), (192)

χ̄σµνχ→ 2χ̄vSρvηχvε
µνρη − 1

mχ
χ̄vSσ

↔
i∂ρ χvε

σρµν +
1

mχ
∂[µ(χ̄vv

ν]χv)

+
1

4m2
χ

χ̄v

←
/∂⊥ σ

µν
⊥ /∂⊥χv +O(1/m3

χ),

(193)

χ̄σµν iγ5χ→ 4χ̄vS
[µvν]χv +

2

mχ
χ̄vS

[µ
↔

i∂ν] χv −
1

2mχ
∂α(χ̄vvβχv)ε

µναβ

− 1

8m2
χ

χ̄v

←
/∂⊥ σ

⊥
αβ /∂⊥χv ε

αβµν +O(1/m3
χ),

(194)

where we have used the dark matter spin operator Sµ = γµ⊥γ5/2. We need 1/m2
χ

terms for tensor currents since they already appear at dimension five in the dipole
operators. Indices in (square) brackets are (anti-)symmetrized, where our convention
is to divide by the number of permutations. For the first formula, we additionally used
the equation of motion. These formulae were checked to agree with [1] up to different
choices of conventions.

For the Majorana case, these relations come with an additional factor 2 on the
right hand side due to the modified tree-level relation. This factor cancels with the
customary factor 1/2 in the definition of our operators, so that the matching conditions
look exactly like the Dirac case.

With the replacement rules in place, we construct a basis that spans all operators
that are induced by our UV theory at tree level. We did not use our program to
construct a full basis due to the different treatment of equations of motions this would
require. Analogously to the previous case, we write

Leff =
∑
d,a

ˆ̃C(d)
a Q̃(d)

a , (195)

where d is the mass dimension of the operator Q̃(d)
a , and again factor out mass scales

from Wilson coefficients with

ˆ̃C(d)
a =

∑
n,m

C̃(d){n,m}
a

Λd−n−m−4vnEWm
m
χ

, (196)

where the tilde is used to distinguish these quantities from the light dark matter
scenario. Operators with gauge bosons are given by

Q̃(G)
1 = (χ̄vSµvνχv)F

µν , Q̃(G)
2 = (χ̄vSµvνχv) F̃

µν , (197)

Q̃(dG)
1 = (χ̄vSµ

↔
i∂ν χv)F

µν , Q̃(dG)
2 = (χ̄vSµ

↔
i∂ν χv) F̃

µν , (198)

Q̃(2dG)
1 = (χ̄v

←
/∂⊥ σ

µν
⊥ /∂⊥χv)F

µν , Q̃(2dG)
2 = (χ̄v

←
/∂⊥ σ

µν
⊥ /∂⊥χv) F̃

µν , (199)

Q̃(GG)
1 = (χ̄vχv)F

µνFµν , Q̃(GG)
2 = (χ̄vχv)F

µνF̃µν , (200)

Q̃(GG)
3 = (χ̄vχv)G

aµνGa
µν , Q̃(GG)

4 = (χ̄vχv)G
aµνG̃a

µν . (201)

The four-fermion operators are given by

Q̃(2F )
1,f = (χ̄vχv) (f̄f), Q̃(2F )

2,f = (χ̄vχv) (f̄ iγ5f), (202)
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Q̃(2F )
3,f = (χ̄vχv) (f̄/vf), Q̃(2F )

4,f = (χ̄vS
µχv) (f̄γµf), (203)

Q̃(2F )
5,f = (χ̄vχv) (f̄/vγ5f), Q̃(2F )

6,f = (χ̄vS
µχv) (f̄γµγ5f), (204)

Q̃(2F )
7,f = (χ̄vS

µvνχv) (f̄σµνf), Q̃(2F )
8,f = (χ̄vSµvνχv) (f̄σρηf)ε

µνρη, (205)

Q̃(d2F )
1,f = ∂µ(χ̄vS

µχv) (f̄f), Q̃(d2F )
2,f = ∂µ(χ̄vS

µχv) (f̄ iγ5f), (206)

Q̃(d2F )
3,f = (χ̄v

↔
i∂µ χv) (f̄γµf), Q̃(d2F )

4,f = (χ̄v

↔
i∂µ χv) (f̄γµγ5f), (207)

Q̃(d2F )
5,f = ∂ν(χ̄vSρvηχv) (f̄γµf)ε

µνρη, Q̃(d2F )
6,f = ∂ν(χ̄vSρvηχv) (f̄γµγ5f)ε

µνρη, (208)

Q̃(d2F )
7,f = (χ̄vS·

↔
i∂ χv) (f̄/vf), Q̃(d2F )

8,f = (χ̄vS·
↔
i∂ χv) (f̄/vγ5f), (209)

Q̃(d2F )
9,f = (χ̄vS

µ
↔

i∂ν χv) (f̄σµνf), Q̃(d2F )
10,f = ∂µ(χ̄vvνχv) (f̄σµνf), (210)

Q̃(d2F )
11,f = (χ̄vS

µ
↔

i∂ν χv) (f̄σρηf)ε
µνρη, Q̃(d2F )

12,f = ∂µ(χ̄vvνχv) (f̄σρηf)ε
µνρη, (211)

Q̃(d2F )
13,f = (χ̄vχv) (f̄v·

↔
iD f) Q̃(d2F )

14,f = (χ̄vχv) (f̄ iγ5v·
↔
iD f) (212)

Q̃(d2F )
15,f = (χ̄vS

µχv) (f̄
↔
iDµ f) Q̃(d2F )

16,f = (χ̄vS
µχv) (f̄ iγ5

↔
iDµ f) (213)

Q̃(d2F )
17,f = (χ̄vS

µvνχv) ∂µ(f̄γνf), Q̃(d2F )
18,f = (χ̄vSµvνχv) ∂ρ(f̄γηf)ε

µνρη, (214)

Q̃(d2F )
19,f = (χ̄vS

µvνχv) ∂µ(f̄γνγ5f), Q̃(d2F )
20,f = (χ̄vSµvνχv) ∂ρ(f̄γηγ5f)ε

µνρη, (215)

where f is any fermion, again keeping for neutrino currents only those operators with
a γµ.

In an intermediate step, we perform the tree-level matching of our full basis below
the electroweak scale for a general dark matter mass to this basis and then used the
results of the last section to subsequently perform the matching with the full UV
operator basis, yielding the following contributions via the operator class with one
gauge boson:

C̃(G){−2,0}
1 = 2cwC

(GH)
2 + YχcwC

(GH)
4 − swC

(GH)
6 − 2YχswC

(GH)
8 , (216)

C̃(G){−2,0}
2 = 2cwC

(GH)
1 + YχcwC

(GH)
3 − swC

(GH)
5 − 2YχswC

(GH)
7 , (217)

C̃(dG){−2,1}
1 = cwC

(GH)
2 +

Yχcw
2

C
(GH)
4 − sw

2
C

(GH)
6 − YχswC

(GH)
8 (218)

C̃(dG){−2,1}
2 = −cwC(GH)

1 − Yχcw
2

C
(GH)
3 +

sw
2
C

(GH)
5 + YχswC

(GH)
7 , (219)

C̃(2dG){−2,2}
1 =

cw
8
C

(GH)
1 +

Yχcw
16

C
(GH)
3 − sw

16
C

(GH)
5 − Yχsw

8
C

(GH)
7 , (220)

C̃(2dG){−2,2}
2 = −cw

8
C

(GH)
2 − Yχcw

16
C

(GH)
4 +

sw
16
C

(GH)
6 +

Yχsw
8

C
(GH)
8 , (221)

C̃(2F ){−2,1}
3,f = eQf

(
cw
2
C

(GH)
1 +

Yχcw
4

C
(GH)
3 − sw

4
C

(GH)
5 − Yχsw

2
C

(GH)
7

)
, (222)

where the last, four-fermion contribution arises by using the equations of motion and
f is any charged fermion. The Wilson coefficients for the four-fermion class with up-
type quarks are given by

C̃(2F ){−1,0}
1,ui

=
1√
2
C

(Y )
25,i +

Yχ

2
√
2
C

(Y )
29,i −

yui√
2λ

(
C

(4H)
1 +

Yχ
2
C

(4H)
3

)
, (223)
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C̃(2F ){−1,0}
2,ui

=
1√
2
C

(Y )
27,i +

Yχ

2
√
2
C

(Y )
31,i , (224)

C̃(2F ){2,0}
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=
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3
Yχ, (225)

C̃(2F ){2,0}
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= −Yχ, (226)

C̃(2F ){−1,0}
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= 2
√
2C

(Y )
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√
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36,i , (227)
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√
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Yχ√
2
C
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, (229)
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while for down-type quarks we find
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C̃(2F ){2,0}
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For charged leptons, we find the contributions
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and for neutrinos
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Finally, the contributions to the Gauge-Gauge class are given by
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7 Preparation for the calculation of anomalous

dimensionmatrices

In this chapter, we will discuss our preparation for the calculation of the running of
UV Wilson coefficients under the renormalization group. To this end, we start by
describing the background field method and renormalization of the effective theory
at high energies. In the second section, we give an overview of the software used in
our calculations. The last two sections provide more details on the simplification of
algebraic expressions and integration of loop momenta, respectively.

7.1 Computation in a general background field gauge

For the abelian U(1), we perform our calculation using a general Rξ gauge. For the
non-abelian symmetries, on the other hand, we use the background field gauge to
simplify the renormalization procedure. This gauge, which was first introduced by
DeWitt [45], first splits up the gauge field into a separate classical field and quantum
field

W a
µν 7→W a

µν +Wa
µν (289)

Ga
µν 7→ Ga

µν + Ga
µν (290)

where we represent the quantum fields with calligraphic letters. The classical field is
treated as a fixed background, while the quantum field configurations are integrated
over in the functional integral. Using the Fadeev-Popov method, we utilize a gauge-
fixing condition which is covariant under the gauge symmetry associated with the
background field. This functional determinant generates a Fadeev-Popov Lagrangian
LFP, introducing the usual ghosts cG and cW . As opposed to the usual procedure,
the classical field now still retains a local gauge symmetry. For a more in-depth
introduction, see [46].

As a reference, the Lagrangian that this procedure generates and which was used
for our computation is given by

L = Lgauge + Lhiggs + Lmatter + Lyukawa + LFP + LDM + Leff

Lgauge = −1

4
BµνBµν −

1

4
Wµν

a W a
µν −

1

4
Gµν

a Ga
µν

where


Bµν = ∂µBν − ∂νBµ
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a
ν +Wa

ν )− ∂ν
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)
+ g2ε

abc
(
W b

µ +Wb
µ

)
(W c

ν +Wc
ν)

Ga
µν = ∂µ (G

a
ν + Ga

ν )− ∂ν
(
Ga

µ + Ga
µ

)
+ g3f

abc
(
Gb

µ + Gb
µ

)
(Gc
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ν)
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LFP = − 1
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ac + g3f
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µ

)
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]
ceG

Here, the Higgs, Yukawa, (dark) matter and effective Lagrangians take the same form
as in chapter 4, with the difference that the covariant derivative now takes the form

Dµ := ∂µ − ig1BµY − ig2
(
W a

µ +Wa
µ

)
τa − ig3

(
Ga

µ + Gb
µ

)
tb. (291)

We explicitly verified consistency of the generated Feynman rules with those supplied
in [46]. As a consistency check of our calculations, we do not fix the gauge parameters
ξi to a particular value.

In order to regularize the infinities arising through momentum integrals, we use
’t Hoofts and Veltmans dimensional regularization [47]. For every field in our theory,
we introduce formally infinite renormalization constants

φ0 = Z
1/2
φ φ, (292)

relating the unrenormalized field φ0 to the renormalized φ. This introduces new
counter-term vertices that can be used to absorb any infinities that could arise in
physical observables order-by-order in perturbation theory. We usually express Zφ

with
δφ = Zφ − 1, (293)

which we set to vanish at constant order in the coupling constants. Using the methods
that will be outlined in the rest of this section, we computed the field renormalization
constants for all particles at one-loop level. They are given by
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, (295)
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)
, (296)
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4
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4
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)
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, (298)

δU = − α1

4πε

4

9
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16π2ε

, (299)

δD = − α1

4πε

1
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4

3
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δL = − α1

4πε

1

4
ξ1 −

α2

4πε

3

4
ξ2, (301)

δE = − α1

4πε
ξ1, (302)

δχ = − α1

4πε
Y 2
χ ξ1 −

α2

4πε
Jχξ2, (303)

where we define αi := g2i /4π,Jχ = Jχ(Jχ+1) and keep the number of generations Ng,
colours Nc and quark flavours Nf explicit. The term with the Yukawa coupling in δQ
and δU only applies to the third generation quarks.

We also renormalize bare couplings g0i according to

g0i = Zg1gi, (304)

where we set δgi = Zgi − 1 again.
This is where we profit from using the background field gauge: it is constructed

in such a way to yield a very useful relation between the renormalization constants of
gauge couplings and the respective gauge field, which we here denote by Ai:

Zgi = Z
−1/2
Ai

. (305)

For the U(1) coupling and gauge boson, this identity is of course implied by the Ward
identity.

We can now read off the gauge vertex renormalization from Eqs. (294) – (296):
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)
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δg3 = − α3

8πε

(
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3
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2

3
Nf

)
. (308)

7.2 Overview of the software toolchain

All one-loop calculations are performed using a combination of different software pack-
ages. Qgraf [48] was used to generate all Feynman diagrams contributing to a partic-
ular matrix element. This was interfaced with custom code for the Form [49] algebra
system. Python code was used to tie these components together and automate their
execution, largely reducing the task of calculating anomalous dimensions and renor-
malization constants to supplying model files with particle content and Feynman rules.

The Feynman rules were mostly derived per hand. As a preparation for the calcu-
lation of the full anomalous dimension matrices, we implemented the standard model
with an added fermion in background field gauge for the FeynRules 2.0 Mathemat-
ica package [50]. We plan to facilitate the automatic derivation for effective operator
rules with a custom export routine for FeynRules.

This setup was extended by Maximilian Reininghaus to support integration with
propagators of heavy particles and successfully applied to dimension five and six run-
ning for fermionic dark matter with a mass substantially above the electroweak scale.
Moreover, we have checked agreement of our dimension-five anomalous dimension ma-
trices against those found in [1].
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7.3 Algebraic simplifications

Evaluation of group weights

To calculate the group weights of Feynman diagrams we need to simplify expressions
of SU(2) and SU(3) generators and Levi-Civita symbols. For the fundamental repre-
sentation of these groups, we employ the well-known algorithm due to Cvitanovic [51].
Specifically, we can reexpress all Levi-Civita Symbols as traces in the fundamental
representation through

fabc = −2i Tr
(
τaτ bτ c − τ cτ bτa

)
, (309)

where τa and fabc are the fundamental generator and structure constant of the given
SU(N), respectively. We then go on to use the Fierz identity

τaijτ
a
kl =

1

2
δilδkj −

1

2N
δijδkl (310)

to eliminate all contracted adjoint indices.
The only case where this is not sufficient are expressions in the unspecified irre-

ducible representation of SU(2) under which the dark matter field transforms. Here,
we instead use an algorithm that simplifies recursively using mainly the following iden-
tities valid in any such representation:

[τa, τ b] =
i
2
εabcτ c, Tr(τaτ b) = Jχ(Jχ + 1)(2Jχ + 1)/3, (311)

τaτa = Jχ(Jχ + 1), τaτ bτa = (Jχ(Jχ + 1)− 1)τ b, (312)

while also exploiting this relation in the fundamental representation for standard model
currents:

τaτ b =
1

4
+

i
2
εabcτ c. (313)

Projection of Dirac structure

The Dirac structure of matrix elements is simplified by projecting Dirac matrices onto
the covariant standard basis using the trace as scalar product, yielding for any matrix
M in bispinor space

M = s1 + pγ5 + vµγ
µ + aµγ

µγ5 + tµνσ
µν , (314)

where the coefficients are given by

s =
1

4
Tr(M), p =

1

4
Tr(γ5M), (315)

vµ =
1

4
Tr(γµM), aµ = −1

4
Tr(γµγ5M), (316)

tµν = −tνµ =
1

8
Tr(σµνM). (317)

The traces and resulting Lorentz structure are computed using Form’s built-in algo-
rithms.
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7.4 Loopmomentum integration

Infrared rearrangement

For the calculation of renormalization constants and anomalous dimension matrices,
we only require the divergent 1/ε terms in our one-loop calculations. This allows us
to considerably simplify the integrals that arise by recursively applying a technique
known as infrared rearrangement. This was introduced and motivated using an exact
decomposition of propagators by Chetyrkin et al. in [52]. This decomposition is given
by

1

(q + p)2 −M2
=

1

q2 −m2
+
M2 − p2 − 2pq −m2

q2 −m2

1

(q + p)2 −M2
, (318)

where q is the loop momentum, p is a linear combination of external momenta, M is
the particle’s mass and m is a new mass parameter introduced to regulate infrared
divergences. While this might seem like an inconsequential rearrangement, its merit
lies in the fact that the second term on the right hand side, which is the only term
whose denominator still contains particle masses and external momenta, has an overall
degree of divergence reduced by one. By repeatedly applying this replacement to
all propagators, we obtain, after a finite number of steps, an expression where all
divergent parts of the integral contain only the simple propagator 1/(q2 −m2).

Master integral for simple denominators

After we have performed infrared rearrangement and discarded convergent terms, the
remaining integrals with an odd number of loop momenta in the numerator vanish by
symmetry. Therefore, we are left with integrals of the type

Ikn :=

∫
dDq

(2π)D
qµ1 ...qµk

(q2 −m2)n
, (319)

where k is even, performing our calculation in D = 4− 2ε dimensions.
Firstly, we simplify the tensor structure by noting that the result must be symmet-

ric in all indices. Therefore we can make the following substitution below the integral

qµ1 ...qµk 7→ αk(q
2)k/2 ∆µ1...µk , (320)

where ∆µ1...µk is the totally symmetric tensor built out of products of metric tensors,
normalized to a factor 1 in front of every independent term (matching the definition
of the Form function dd_()). The proportionality constant α can be determined by
demanding equality when contracting both sides with metric tensors, yielding

α−1k =

k
2
−1∏

i=0

(D + 2i). (321)
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The remaining integral is evaluated in (4 − 2ε)-dimensional spherical coordinates
after performing a Wick rotation, yielding∫

dDq

(2π)D
(q2)k/2

(q2 −m2)n
=

i(−1)k/2+2−n

(4π)D/2

(m2)k/2+D/2−n

Γ(D/2)

× Γ(n+D/2− 2) Γ(n− k/2−D/2)

Γ(n)
.

(322)

Putting this together, we find that the integral converges for ε → 0 exactly when
2n−k > 4. Such integrals are finite and can therefore be disregarded for our purposes.
On the other hand, when 2n−k < 4, the divergent term gets multiplied by the artificial
mass parameter m, which must vanish since the original amplitude is independent of
m. Thus, we limit ourselves to the case 2n− k = 4.

Using the Laurent expansion

Γ(ε−N) =
(−1)N

N !

(
1

ε
− γE +

N∑
i=1

1

i
+O(ε)

)
, (323)

where N ∈ N and γE is the Euler-Mascheroni constant, our final result is then given
by

I2n−4n =
i∆µ1...µk

16π2 2k/2 (n− 1)!

1

ε
+O(ε0), (324)

which can easily be implemented as a Form replacement rule.
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8 Examplemodels

To motivate the usefulness of our extension of the effective field theory treatment to
dimension seven operators, we will now give a number of models that generate ef-
fective operators starting at this mass dimension. These models have not been studied
in detail but are supposed to serve only as illustrative examples. We limit ourselves
to UV completions with interactions of mass dimension four. Note that this does not
guarantee traditional renormalizability for models A and C due to the propagators of
the massive vector fields they introduce.

All models start out with the SM fields and interactions as well as the gauge
interactions of the DM field χ. The first three models generate effective interactions
between the dark and standard model sector only at loop order. To prevent tree-level
contributions to dimension six DM-DM operators, which after mixing could have a
comparably large effect as the dimension seven DM-SM operators we are considering
here, we introduce a heavy copy χ′ of the dark matter field. For a minimal treatment we
set the masses of all new particles to the same mediator scale Λ. α, β, γ are parameters
whenever they appear.

Model A:Two-Higgs operators

To generate Two-Higgs operators, we introduce a new scalar mediator ϕ as well as a
Proca field Nµ together with the following interactions:

L ⊃ αχ̄′χϕ+ βϕNµD
µH + h.c. (325)

By assigning the hypercharge -1/2 to ϕ and χ′, we prevent mixing between χ and χ′.
The left diagram displayed in Fig. 5 yields the following contributions in MS to our
complete basis:

C
(2d2H)
1 = − 1

16π2Λ3

α2β2

6
(326)

FIG. 5. Contribution to Two- and Four-Higgs operators in models A and B, respectively.
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FIG. 6. Contribution to effective operators in model C.

The other Two-Higgs operators can be generated completely analogously by replac-
ing the scalar DM interaction with a pseudoscalar, charging ϕ under SU(2) and/or
introducing a χ̄γµχ′Nµ + h.c. interaction.

Model B: Four-Higgs operators

We introduce two scalars ϕ1 and ϕ2 with the interactions

L ⊃ αχ̄′χϕ1 + βϕ†1ϕ2H
†H + h.c., (327)

where we can charge all heavy particles under an additional U(1) to prevent mixing
between χ and χ′. As per the right Feynman graph in Fig. 5, this gives the following
contributions:

C
(4H)
1 =

1

16π2Λ3

α2β2

6
(328)

The remaining Four-Higgs operators could be generated with a pseudoscalar interac-
tion and/or charging ϕ2 under SU(2).

Model C:Gauge-Gauge, Gauge-Higgs and Four-Higgs operators

In this model, we introduce two Proca fields Nµ and Ma
µ , where the latter transforms

in the adjoint representation of one of the SM gauge symmetries. To illustrate, we
choose SU(2) and select the Lagrangian

L ⊃ αχ̄′γµχN
µ + βMµ

aN
νW a

µν + γMµ
aNµH

†τaH + h.c., (329)

where we can again prevent mixing between χ and χ′ by assigning all new particles
a charge under an additional U(1). The diagrams in Fig. 6 yield contributions to the
Gauge-Gauge, Gauge-Higgs and Four-Higgs operator classes:

C
(GG)
15 =

1

16π2Λ3

α2β2

6
(330)

C
(GH)
5 =

1

16π2Λ3

α2βγ

3
(331)

C
(4H)
1 = − 1

16π2Λ3

α2γ2

6
(332)
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FIG. 7. Contribution to effective operators in model D.

Model D:Yukawa-like operators

We generate Yukawa-like operators by including a number of Yukawa couplings with
a SM singlet scalar ϕ and a Dirac particle ψ, which we choose to transform under the
standard model like a given quark or lepton doublet. For leptons, for example, we can
introduce the interactions

L ⊃ αχ̄χϕ+ βL̄ψϕ+ γψ̄EH + h.c., (333)

yielding a contribution
C

(Y )
1 =

αβγ

Λ3
. (334)

Choosing α or β complex as well as introducing a pseudoscalar interaction and/or
charging ϕ under SU(2) generates the remaining non-tensor Yukawa-like operators.
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9 Summary

The effective field theory treatment of dark matter searches and particularly direct
detection is very attractive for a model-independent interpretation and combination
of experimental data. Moreover, it allows for the consistent study of renormalization
group effects, which can considerably affect the phenomenology of UV theories and
thereby their prospects of discovery.

In this thesis, we set out to expand the scope of an existing framework [1] to di-
mension seven UV operators. To this end, we provided a complete basis of dimension
seven DM-SM operators invariant under the standard model symmetries and subse-
quently matched this basis onto effective theories valid below the electroweak scale,
for both light and EW-scale dark matter. Moreover, we report on the assembly of a
software framework for a largely automated calculation of anomalous dimensions in
the UV regime.

In future work, we plan to interface FeynRules with our code as the last necessary
step before calculating the anomalous dimensions. Additionally, we need to extend
the low energy effective theories for our use. In particular, the additional tensor
interactions must be included in Heavy Baryon Chiral Perturbation Theory. Finally,
we would like to provide public code for automated RG running and matching to
facilitate the use of our results.
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der Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle eines
mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der Prüfling
zudem exmatrikuliert werden (§ 63 Abs. 5 Hochschulgesetz - HG - ).

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis
zu 3 Jahren oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird ggf. elektronische Vergleichswerkzeuge
(wie z.B. die Software ”turnitin”) zur Überprüfung von Ordnungswidrigkeiten in Prü-
fungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen.

Ort, Datum Unterschrift
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